Joint Frequency Stabilisation in Future 100% Renewable Electric Power Systems
Abstract
:1. Introduction
2. Today’s Frequency Stabilisation in the German Electricity Grid
2.1. Technical Aspects
2.2. Regulatory Framework
2.3. National Power Generation Portfolio
3. Future Development of the Electricity System Towards 100% Renewables
4. Interview Results on Future Frequency Stabilisation
4.1. Expert Opinion on Future Frequency Stabilisation
4.2. Expert Opinion on the Future Frequency Containment Reserve
4.3. Conclusion of the Interviews
5. Problem Analysis
6. Problem Solution
6.1. Solution to Cover Future Needs of Inertia
6.2. Solution to Provide Frequency Containment Reserve in Future
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 50Hertz, Amprion, TenneT, TransnetBW. Systemschutzplan der Vier Deutschen Übertragungsnetzbetreiber. Available online: https://www.netztransparenz.de/de-de/Strommarktdesign/ER-Verordnung/Ver%C3%B6ffentlichung-Systemschutzplan (accessed on 21 November 2024).
- Kundur, P.S. Power System Stability and Control; Mc Graw Hill: New York, NY, USA, 1994. [Google Scholar]
- 50Hertz, Amprion, TenneT, TransnetBW. Frequency Containment Reserve: Aktivierung der Frequency Containment Reserve. Available online: https://www.regelleistung.net/de-de/Infos-f%C3%BCr-Anbieter/Aktivierung-der-Reserven/Frequency-Containment-Reserve (accessed on 22 November 2024).
- ENTSO-E. Inertia and Rate of Change of Frequency (RoCoF): Version 17—SPD—Inertia TF; ENTSO-E: Brussels, Belgium, 2020. [Google Scholar]
- Thiesen, H.; Gloe, A.; Jauch, C. Grid Frequency Data—WETI. Available online: https://osf.io/jbk82/ (accessed on 14 November 2024).
- Thiesen, H.; Jauch, C. Identifying Electromagnetic Illusions in Grid Frequency Measurements for Synthetic Inertia Provision. Available online: https://www.researchgate.net/publication/333651873_Identifying_electromagnetic_illusions_in_grid_frequency_measurements_for_synthetic_inertia_provision (accessed on 28 November 2024).
- 50Hertz, Amprion, TenneT, TransnetBW. Bewertung der Systemstabilität: Netzentwicklungsplan Strom 2037 mit Ausblick 2045, Version 2023, Zweiter Entwurf. Available online: https://www.netzentwicklungsplan.de/en/nep-aktuell/netzentwicklungsplan-20372045-2023 (accessed on 23 November 2024).
- Bundesministerium der Justiz. Gesetz über die Elektrizitäts- und Gasversorgung (Energiewirtschaftsgesetz—EnWG): § 12h Marktgestützte Beschaffung Nicht Frequenzgebundener Systemdienstleistungen. Available online: https://www.gesetze-im-internet.de/enwg_2005/__12h.html (accessed on 28 November 2024).
- Bundesnetzagentur. BK6-23-010: Beschlusskammer 6. Available online: https://www.bundesnetzagentur.de/DE/Beschlusskammern/1_GZ/BK6-GZ/2023/BK6-23-010/BK6-23-010_verfahrenser%C3%B6ffnung.html (accessed on 21 November 2024).
- Roscoe, A.; Yu, M.; Dyśko, A.; Booth, C.; Ierna, R.; Zhu, J.; Urdal, H. A VSM (Virtual Synchronous Machine) Convertor Control Model Suitable for RMS Studies for Resolving System Operator/Owner Challenges. Available online: https://www.researchgate.net/publication/316242335_A_VSM_Virtual_Synchronous_Machine_Convertor_Control_Model_Suitable_for_RMS_Studies_for_Resolving_System_Operator_Owner_Challenges (accessed on 25 November 2024).
- Unruh, P.; Nuschke, M.; Strauß, P.; Welck, F. Overview on Grid-Forming Inverter Control Methods. Energies 2020, 13, 2589. [Google Scholar] [CrossRef]
- Bundesnetzagentur. BK6-23-010: Zweite Konsultation. Available online: https://www.bundesnetzagentur.de/DE/Beschlusskammern/1_GZ/BK6-GZ/2023/BK6-23-010/BK6-23-010_zweite_konsultation.html?nn=877610 (accessed on 22 November 2024).
- 50Hertz, Amprion, TenneT, TransnetBW. Beschaffung Regelleistung & Regelarbeit. Available online: https://www.regelleistung.net/de-de/Infos-f%C3%BCr-Anbieter/Beschaffung-Regelleistung-Regelarbeit (accessed on 22 November 2024).
- Seidel, J.; Rauscher, F.; Engel, B. Enhanced contribution of photovoltaic power systems to frequency control in future power systems. IET Renew. Power Gener. 2021, 15, 2753–2765. [Google Scholar] [CrossRef]
- Bundesnetzagentur. Marktbeobachtung—Monitoringbericht 2023: Monitoringbericht gemäß § 63 Abs. 3 i. V. m. § 35 EnWG und § 48 Abs. 3 i. V. m. § 53 Abs. 3 GWB. Available online: https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Monitoringberichte/start.html (accessed on 14 November 2024).
- Bundesnetzagentur. SMARD: Download Market Data. Available online: https://www.smard.de/en/downloadcenter/download-market-data/ (accessed on 12 November 2024).
- Figgener, J.; Hecht, C.; Haberschusz, D.; Bors, J.; Spreuer, K.G.; Kairies, K.-P.; Stenzel, P.; Sauer, D.U. The Development of Battery Storage Systems in Germany: A Marekt Review (Status 2023). Available online: https://battery-charts.rwth-aachen.de/main-page/ (accessed on 12 November 2024).
- Federal Ministry for Economic Affairs and Climate. The Climate-Neutral Electricity System Platform—In Dialogue for a New Market Design. Available online: https://www.bmwk.de/Redaktion/EN/Dossier/the-climate-neutral-electricity-system-platform.html (accessed on 26 November 2024).
- Brandes, J.; Haun, M.; Wrede, D.; Jürgens, P.; Kost, C.; Henning, H.-M. Wege zu Einem Klimaneutralen Energiesystem—Die Deutsche Energiewende im Kontext Gesellschaftlicher Verhaltensweisen: Update November 2021: Klimaneutralität 2045. Available online: https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien/wege-zu-einem-klimaneutralen-energiesystem-version-2020-21.html (accessed on 19 November 2024).
- Fraunhofer ISE. Fraunhofer ISE Study 2021: Towards a Climate-Neutral Energy System. Available online: https://www.energy-charts.info/charts/remod_installed_power/chart.htm?l=en&c=DE (accessed on 25 November 2024).
- Prognos, Öko-Institut, Wuppertal-Institut. Klimaneutrales Deutschland 2045: Wie Deutschland Seine Klimaziele Schon vor 2050 Erreichen kann Langfassung im Auftrag von Stiftung Klimaneutralität, Agora Energiewende und Agora Verkehrswende. Available online: https://www.agora-energiewende.de/publikationen/klimaneutrales-deutschland-2045-1 (accessed on 23 November 2024).
- Pereira, G.I.; Specht, J.M.; Silva, P.P.; Madlener, R. Technology, business model, and market design adaptation toward smart electricity distribution: Insights for policy making. Energy Policy 2018, 121, 426–440. [Google Scholar] [CrossRef]
- Dehghanpour, K.; Afsharnia, S. Electrical demand side contribution to frequency control in power systems: A review on technical aspects. Renew. Sustain. Energy Rev. 2015, 41, 1267–1276. [Google Scholar] [CrossRef]
- Seneviratne, C.; Ozansoy, C. Frequency response due to a large generator loss with the increasing penetration of wind/PV generation—A literature review. Renew. Sustain. Energy Rev. 2016, 57, 659–668. [Google Scholar] [CrossRef]
- Fernández-Guillamón, A.; Gómez-Lázaro, E.; Muljadi, E.; Molina-García, Á. Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time. Renew. Sustain. Energy Rev. 2019, 115, 109369. [Google Scholar] [CrossRef]
- Gloe, A.; Jauch, C.; Craxiun, B.; Zanter, A.; Winkelmann, J.; Craciun, B.; Zanter, A. Influence of Continuous Provision of Synthetic Inertia on the Mechanical Loads of a Wind Turbine. Energies 2021, 14, 5185. [Google Scholar] [CrossRef]
- Jauch, C.; Gloe, A. Simultaneous Inertia Contribution and Optimal Grid Utilization with Wind Turbines. Energies 2019, 12, 3013. [Google Scholar] [CrossRef]
- Jauch, C.; Jost, R.; Kloft, P. Hydraulic variable inertia flywheel. Appl. Energy 2024, 360, 122830. [Google Scholar] [CrossRef]
Technology | H [s] |
---|---|
Wind power plant | 7.5 |
Batteries | 12.5 |
Hydro-pumped storage | 4.2 |
CCGT | 2.5 |
Gas turbine | 1.5 |
Technology | H [s] | S [GW] | Ekin [GWs] |
---|---|---|---|
Wind power plant | 7.5 | 93 | 697.5 |
Batteries (stationary) | 12.5 | 178 | 2225.0 |
Hydro-pumped storage | 4.2 | 9 | 37.8 |
CCGT | 2.5 | 63 | 157.5 |
Gas turbine | 1.5 | 88 | 132.0 |
Sum | 7.53 | 431 | 3249.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reese, L.; Rettig, A.; Jauch, C.; Domin, R.J.; Karshüning, T. Joint Frequency Stabilisation in Future 100% Renewable Electric Power Systems. Energies 2025, 18, 418. https://doi.org/10.3390/en18020418
Reese L, Rettig A, Jauch C, Domin RJ, Karshüning T. Joint Frequency Stabilisation in Future 100% Renewable Electric Power Systems. Energies. 2025; 18(2):418. https://doi.org/10.3390/en18020418
Chicago/Turabian StyleReese, Lisanne, Arne Rettig, Clemens Jauch, Richard Johannes Domin, and Tom Karshüning. 2025. "Joint Frequency Stabilisation in Future 100% Renewable Electric Power Systems" Energies 18, no. 2: 418. https://doi.org/10.3390/en18020418
APA StyleReese, L., Rettig, A., Jauch, C., Domin, R. J., & Karshüning, T. (2025). Joint Frequency Stabilisation in Future 100% Renewable Electric Power Systems. Energies, 18(2), 418. https://doi.org/10.3390/en18020418