Regenerative Braking Energy Flow Control Algorithm for Power Grid Voltage Stabilization in Mobile Energy Storage Systems
Abstract
:1. Introduction
2. System Description and Mathematical Models
2.1. System Description
- Discharging the SC of the vehicle under consideration into the grid when the voltage of the power grid is lower than the nominal value due to acceleration or constant speed driving of other vehicles in the grid.
- Charging the SC of the considered vehicle by drawing energy from the power grid when the power grid voltage has a higher value than the nominal value due to the braking of other vehicles in the grid.
2.2. Vehicle Model
- —vehicle mass;
- —vehicle acceleration;
- —vehicle speed;
- —gravitational acceleration;
- —vehicle inline angle;
- , , and —coefficients of the Davis formula used to model every resistive force acting on the vehicle [32].
- —power grid voltage, at the catenary;
- —vehicle current.
2.3. Power Grid Model
2.4. SC Electrothermal Model
3. Control Algorithm and Optimal SC Current Reference Calculation
3.1. Control Algorithm
3.2. Calculation of the Optimal SC Reference Current
4. Offline Simulation Experiment
4.1. Offline Simulation Model
- -
- The SC is charged when the power grid voltage at the catenary exceeds 605 V until it drops to 601 V.
- -
- The SC is discharged when the power grid voltage at the catenary falls below 580 V until it exceeds 595 V.
- -
- If the SC voltage is in the range V, enable the charging/discharging of the SC.
- -
- If the SC voltage is V, only enable the charging of the SC.
- -
- If the SC voltage is V, only enable the discharging of the SC.
4.2. Offline Simulation Experiment Results
- The acceleration of the second tram on the incline requires more energy as gravity has to be compensated, causing larger voltage drops and resulting in a faster discharging of the SC.
- Due to the influence of gravity, a smaller amount of regenerative braking energy is available to the second tram, so less energy is available to charge the SC.
5. HIL Simulation Experiment
5.1. HIL Simulation Model
5.2. HIL Simulation Experiment Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
ESS | Energy storage system | Criterion function | |
SC | Supercapacitor | Temperature criterion scaling coefficient | |
HIL | Hardware in the loop | Hamiltonian | |
Tram speed | Optimal value | ||
Tram power | Lagrange multiplier | ||
Grid voltage | Normal cone vector | ||
Tram current | Differential equation coefficient | ||
SC voltage | Optimal SC current | ||
SC temperature | SC current scaling coefficient | ||
SC reference current | HIL simulation SC capacitance | ||
Grid current | HIL simulation battery capacity | ||
Total traction force | HIL simulation SC nominal voltage | ||
Tram mass | HIL simulation battery nominal voltage | ||
Tram acceleration | HIL simulation grid resistance | ||
Gravitational constant | HIL simulation grid inductance | ||
Track inclination | HIL simulation SC equivalent series resistance | ||
Davis formula coefficient | HIL simulation switching frequency | ||
DC voltage source value | HIL simulation SC thermal resistance | ||
Grid resistance | HIL simulation SC thermal capacitance | ||
Grid inductance | HIL simulation ambient temperature | ||
SC capacitance | HIL simulation SC operating voltage | ||
SC equivalent series resistance | |||
SC thermal capacitance | |||
SC thermal resistance | |||
Ambient temperature | |||
SC heat loss |
References
- Commission Regulation (EU) 2019/1781, Official Journal of the European Union, L 272, 25 October 2019. Available online: https://eur-lex.europa.eu/eli/reg/2019/1781/oj/eng (accessed on 27 November 2024).
- Popescu, M.; Bitoleanu, A. A Review of the Energy Efficiency Improvement in DC Railway Systems. Energies 2019, 12, 1092. [Google Scholar] [CrossRef]
- González-Gil, A.; Palacin, R.; Batty, P. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy. Energy Convers. Manag. 2013, 75, 374–388. [Google Scholar] [CrossRef]
- Khodaparastan, M.; Mohamed, A.A.; Brandauer, W. Recuperation of Regenerative Braking Energy in Electric Rail Transit Systems. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2831–2847. [Google Scholar] [CrossRef]
- Krishan, O.; Suhag, S. An updated review of energy storage systems: Classification and applications in distributed generation power systems incorporating renewable energy resources. Int. J. Energy Res. 2019, 43, 6171–6210. [Google Scholar] [CrossRef]
- Li, J.; Xin, D.; Wang, H.; Liu, C. Application of Energy Storage System in Rail Transit: A Review. In Proceedings of the 2022 International Conference on Power Energy Systems and Applications (ICoPESA), Singapore, 25–27 February 2022; pp. 539–552. [Google Scholar] [CrossRef]
- Liu, X.; Li, K. Energy storage devices in electrified railway systems: A review. Transp. Saf. Environ. 2020, 2, 183–201. [Google Scholar] [CrossRef]
- Zhao, J.; Burke, A.F. Review on supercapacitors: Technologies and performance evaluation. J. Energy Chem. 2021, 59, 276–291. [Google Scholar] [CrossRef]
- Yadlapalli, R.T.; Alla, R.R.; Kandipati, R.; Kotapati, A. Super capacitors for energy storage: Progress, applications and challenges. J. Energy Storage 2022, 49, 104194. [Google Scholar] [CrossRef]
- Liu, S.; Wei, L.; Wang, H. Review on reliability of supercapacitors in energy storage applications. Appl. Energy 2020, 278, 115436. [Google Scholar] [CrossRef]
- Wu, C.; Lu, S.; Tian, Z.; Xue, F.; Jiang, L. Energy-Efficient Train Control with Onboard Energy Storage Systems considering Stochastic Regenerative Braking Energy. IEEE Trans. Transp. Electrif. 2024, 10, 8275–8286. [Google Scholar] [CrossRef]
- Sumpavakup, C.; Ratniyomchai, T.; Kulworawanichpong, T. Optimal energy saving in DC railway system with on-board energy storage system by using peak demand cutting strategy. J. Mod. Transp. 2017, 25, 223–235. [Google Scholar] [CrossRef]
- Liu, W.; Xu, J.; Tang, J. Study on control strategy of urban rail train with on-board regenerative braking energy storage system. In Proceedings of the 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 3924–3929. [Google Scholar] [CrossRef]
- Pavlović, T.; Župan, I.; Šunde, V.; Ban, Ž. HIL Simulation of a Tram Regenerative Braking System. Electronics 2021, 10, 1379. [Google Scholar] [CrossRef]
- Radu, P.V.; Szelag, A.; Steczek, M. On-Board Energy Storage Devices with Supercapacitors for Metro Trains—Case Study Analysis of Application Effectiveness. Energies 2019, 12, 1291. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, S.; Peng, Y.; Wu, C.; Meng, G.; Feng, M.; Liu, B. Impact of On-Board Hybrid Energy Storage Devices on Energy-Saving Operation for Electric Trains in DC Railway Systems. Batteries 2022, 8, 167. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, C.; Meng, G.; Xue, F.; Lu, S. Optimal Sizing of Onboard Hybrid Energy Storage Devices Considering the Long-Term Train Operation. IEEE Access 2022, 10, 58360–58374. [Google Scholar] [CrossRef]
- Zhong, Z.; Yang, Z.; Fang, X.; Lin, F.; Tian, Z. Hierarchical Optimization of an On-Board Supercapacitor Energy Storage System Considering Train Electric Braking Characteristics and System Loss. IEEE Trans. Veh. Technol. 2020, 69, 2576–2587. [Google Scholar] [CrossRef]
- Lamedica, R.; Ruvio, A.; Palagi, L.; Mortelliti, N. Optimal Siting and Sizing of Wayside Energy Storage Systems in a D.C. Railway Line. Energies 2020, 13, 6271. [Google Scholar] [CrossRef]
- Kampeerawat, W.; Koseki, T. A strategy for utilization of regenerative energy in urban railway system by application of smart train scheduling and wayside energy storage system. Energy Procedia 2017, 138, 795–800. [Google Scholar] [CrossRef]
- Allen, L.; Chien, S. Application of Regenerative Braking with Optimized Speed Profiles for Sustainable Train Operation. J. Adv. Transp. 2021, 2021, 8555372. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Arévalo, P.; Jurado, F. An optimization framework for planning wayside and on-board hybrid storage systems for tramway applications. J. Energy Storage 2021, 43, 103207. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, Q.; Yang, H.; Zhang, Y. Control strategy of hybrid energy storage in regenerative braking energy of high-speed railway. Energy Rep. 2022, 8, 1330–1338. [Google Scholar] [CrossRef]
- Che, C.; Wang, Y.; Lu, Q.; Peng, J.; Liu, X.; Chen, Y.; He, B. An effective utilization scheme for regenerative braking energy based on power regulation with a genetic algorithm. IET Power Electron. 2022, 15, 1392–1408. [Google Scholar] [CrossRef]
- Sengor, I.; Kilickiran, H.C.; Akdemir, H.; Kekezoglu, B.; Erdinc, O.; Catalao, J.P.S. Energy Management of a Smart Railway Station Considering Regenerative Braking and Stochastic Behaviour of ESS and PV Generation. IEEE Trans. Sustain. Energy 2018, 9, 1041–1050. [Google Scholar] [CrossRef]
- Qin, Q.; Guo, T.; Lin, F.; Yang, Z. Energy Transfer Strategy for Urban Rail Transit Battery Energy Storage System to Reduce Peak Power of Traction Substation. IEEE Trans. Veh. Technol. 2019, 68, 11714–11724. [Google Scholar] [CrossRef]
- Kleftakis, V.A.; Hatziargyriou, N.D. Optimal Control of Reversible Substations and Wayside Storage Devices for Voltage Stabilization and Energy Savings in Metro Railway Networks. IEEE Trans. Transp. Electrif. 2019, 5, 515–523. [Google Scholar] [CrossRef]
- Roch-Dupré, D.; Gonsalves, T.; Cucala, A.P.; Pecharromán, R.R.; López-López, Á.J.; Fernández-Cardador, A. Determining the optimum installation of energy storage systems in railway electrical infrastructures by means of swarm and evolutionary optimization algorithms. Int. J. Electr. Power Energy Syst. 2021, 124, 106295. [Google Scholar] [CrossRef]
- Župan, I.; Šunde, V.; Ban, Ž.; Novoselnik, B. An Energy Flow Control Algorithm of Regenerative Braking for Trams Based on Pontryagin’s Minimum Principle. Energies 2023, 16, 7346. [Google Scholar] [CrossRef]
- Negroiu, R.; Ionescu, C.; Svasta, P.; Vasile, A. Influence of temperature on supercapacitors behavior in series/parallel connections. In Proceedings of the 2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME), Constanta, Romania, 26–29 October 2017; pp. 367–370. [Google Scholar] [CrossRef]
- Reichbach, N.; Mellincovsky, M.; Peretz, M.M.; Kuperman, A. Long-Term Wide-Temperature Supercapacitor Ragone Plot Based on Manufacturer Datasheet. IEEE Trans. Energy Convers. 2016, 31, 404–406. [Google Scholar] [CrossRef]
- Sengor, I.; Kilickiran, H.C.; Akdemir, H.; Kilic, B. Determination of Potential Regenerative Braking Energy in Railway Systems: A Case Study for Istanbul M1A Light Metro Line. J. Autom. Control Eng. 2017, 5, 21–25. [Google Scholar] [CrossRef]
- Župan, I.; Šunde, V.; Ban, Ž.; Krušelj, D. Algorithm with temperature-dependent maximum charging current of a supercapacitor module in a tram regenerative braking system. J. Energy Storage 2021, 36, 102378. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
17.965 | 0.04 °C/W | ||
34.536 | 33,000 J/°C | ||
7827.249 | 25 °C | ||
600 V | 450 V | ||
12,960 | |||
0.0023 H | 20 | ||
13,058 | |||
63 F |
Maximum Temperature | Total Stored Energy | |
---|---|---|
°C | ||
°C | ||
°C |
Maximum SC Temperature in This Paper | Maximum SC Temperature in [27] | |
---|---|---|
°C | °C | |
°C | °C | |
°C | °C |
Parameter | Value | Parameter | Value |
---|---|---|---|
83 F | 0.04 °C/W | ||
12 Ah | 7700 J/°C | ||
48 V | 25 °C | ||
36 V | 33 V | ||
12,960 | |||
0.0023 H | 20 | ||
13,058 | |||
10 kHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Župan, I.; Šunde, V.; Ban, Ž.; Novoselnik, B. Regenerative Braking Energy Flow Control Algorithm for Power Grid Voltage Stabilization in Mobile Energy Storage Systems. Energies 2025, 18, 410. https://doi.org/10.3390/en18020410
Župan I, Šunde V, Ban Ž, Novoselnik B. Regenerative Braking Energy Flow Control Algorithm for Power Grid Voltage Stabilization in Mobile Energy Storage Systems. Energies. 2025; 18(2):410. https://doi.org/10.3390/en18020410
Chicago/Turabian StyleŽupan, Ivan, Viktor Šunde, Željko Ban, and Branimir Novoselnik. 2025. "Regenerative Braking Energy Flow Control Algorithm for Power Grid Voltage Stabilization in Mobile Energy Storage Systems" Energies 18, no. 2: 410. https://doi.org/10.3390/en18020410
APA StyleŽupan, I., Šunde, V., Ban, Ž., & Novoselnik, B. (2025). Regenerative Braking Energy Flow Control Algorithm for Power Grid Voltage Stabilization in Mobile Energy Storage Systems. Energies, 18(2), 410. https://doi.org/10.3390/en18020410