Flying a Micro-Drone by Dynamic Charging for Vertical Direction Using Optical Wireless Power Transmission
Abstract
:1. Introduction
2. Current Status of Drones
2.1. Relationship Between Weight and Flight Time of Commercialized Drones
2.2. Previous Report of Dynamic Charging to Drones by OWPT
3. Evaluation of the Power Required for Flight of a Micro-Drone
3.1. Preparation of Micro-Drones
3.2. Evaluation of the Effect of Weight on Power Required for Flight
3.3. Flight Powered by Ground-Mounted Solar Cells
4. Evaluation of Solar-Cell-Mounting Conditions
4.1. Evaluation of Mountable Solar Cell Sizes
4.2. Comparison of Solar Cell Mounting Method
4.3. Characterization of Solar Cells Mounted on the Micro-Drone
5. Vertical Flight Demonstration of a Micro-Drone Equipped with Solar Cells
5.1. Experimental Configuration
5.2. Experiment Results
5.3. Effect of Lens Configuration on Flight Height
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bogue, R. Beyond imaging: Drones for physical applications. Ind. Robot 2023, 50, 557–561. [Google Scholar] [CrossRef]
- AL-Dosari, K.; Hunaiti, Z.; Balachandran, W. Systematic review on civilian drones in safety and security applications. Drones 2023, 7, 210. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Othman, N.Q.H.; Khan, M.A.; Amjad, H.; Żywiołek, J. A comprehensive review of micro UAV charging techniques. Micromachines 2022, 13, 977. [Google Scholar] [CrossRef] [PubMed]
- Aldhaher, S.; Mitcheson, P.D.; Arteaga, J.M.; Kkelis, G.; Yates, D.C. Light-weight wireless power transmission for mid-air charging of drones. In Proceedings of the 11th European Conference on Antennas and Propagation, Paris, France, 19–24 March 2017; pp. 336–340. [Google Scholar] [CrossRef]
- Brown, W.C. Experiments involving a microwave beam to power and position a helicopter. IEEE Trans. Aerosp. Electron. Syst. 1966, AES-5, 692–702. [Google Scholar] [CrossRef]
- Kaya, N.; Matsumoto, H. METS rocket experiment and MILAX airplane demonstration. J. Space Technol. Sci. 1992, 8, 16–21. [Google Scholar]
- SHARP (Stationary High Altitude Relay Platform). Available online: https://www.friendsofcrc.ca/Projects/SHARP/sharp.html (accessed on 14 December 2024).
- Miyamoto, T. Optical wireless power transmission using VCSELs. In Proceedings of the SPIE, Strasbourg, France, 22–26 April 2018; Volume 10682, p. 1068204. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Miyamoto, T. Design and characterization of dynamic OWPT charging to micro-drones. In Proceedings of the 4th Optical Wireless and Fiber Power Transmission Conference (OWPT2022), Yokohama, Japan, 18–21 April 2022. OWPT5-02. [Google Scholar]
- Kikuchi, Y.; Watamura, T.; Miyamoto, T. Vertical flight demonstration of OWPT-based micro-drones with installed solar cells. In Proceedings of the 5th Optical Wireless and Fiber Power Transmission Conference (OWPT2023), Yokohama, Japan, 18–21 April 2023. OWPT10-02. [Google Scholar]
- Watamura, T.; Miyamoto, T. Flight height extension of micro-drones by light beam shape control of optical wireless power transmission. In Proceedings of the 28th Microoptics Conference (MOC2023), Miyazaki, Japan, 24–27 September 2023. F-2. [Google Scholar] [CrossRef]
- Itakura, K.; Noaki, S.; Hosoi, F. Fruit counting using autonomous flight of small UAV. J. Jpn. Agric. Syst. Soc. 2022, 38, 29–35. [Google Scholar] [CrossRef]
- Pikalov, S.; Azaria, E.; Sonnenberg, S.; Ben-Moshe, B.; Azari, A. Vision-less sensing for autonomous micro-drones. Sensors 2021, 21, 5293. [Google Scholar] [CrossRef] [PubMed]
- la Cour-Harbo, A. Mass threshold for ‘harmless’ drones. Int. J. Micro Air Veh. 2017, 9, 77–92. [Google Scholar] [CrossRef]
- Lee, D.; Hess, D.J.; Heldeweg, M.A. Safety and privacy regulations for unmanned aerial vehicles: A multiple comparative analysis. Technol. Soc. 2022, 71, 102079. [Google Scholar] [CrossRef]
- Fafard, S.; York, M.C.A.; Proulx, F.; Valdivia, C.E.; Wilkins, M.M.; Arès, R.; Aimez, V.; Hinzer, K.; Masson, D.P. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures. Appl. Phys. Lett. 2016, 108, 071101. [Google Scholar] [CrossRef]
- Helmers, H.; Höhn, O.; Lackner, D.; López, E.; Ruiz-Preciado, L.; Schauerte, M.; Siefer, G.; Dimroth, F.; Bett, A.W. Highly efficient III-V based photovoltaic laser power converter. In Proceedings of the 1st Optical Wireless and Fiber Power Transmission Conference, Yokohama, Japan, 23–25 April 2019. OWPT1-01. [Google Scholar]
- Miyoshi, M.; Nakabayashi, T.; Yamamoto, K.; Dalapati, P.; Egawa, T. Improved epilayer qualities and electrical characteristics for GaInN multiple-quantum-well photovoltaic cells and their operation under artificial sunlight and monochromatic light illuminations. AIP Adv. 2021, 11, 095208. [Google Scholar] [CrossRef]
- Ouyang, J.; Che, Y.; Xu, J.; Wu, K. Throughput maximization for laser-powered UAV wireless communication systems. In Proceedings of the IEEE International Conference on Communications Workshops, Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Jaafar, W.; Yanikomeroglu, H. Dynamics of laser-charged UAVs: A battery perspective. IEEE Internet Things J. 2021, 8, 10573–10582. [Google Scholar] [CrossRef]
- Ying, J.; He, Y. UAV laser charging technology based on beacon laser alignment. In Proceedings of the SPIE, Hefei, China, 26–28 November 2018; Volume 11068, p. 1106809. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, D.; Zhu, D.; Shi, Q.; Gu, J.; Ai, Y. Design and experiment for realization of laser wireless power transmission for small unmanned aerial vehicles. In Proceedings of the SPIE, Beijing, China, 5–7 May 2015; Volume 9671, pp. 133–139. [Google Scholar] [CrossRef]
- William Setiawan Putra, A.; Kato, H.; Maruyama, T. Infrared LED marker for target recognition in indoor and outdoor applications of optical wireless power transmission system. Jpn. J. Appl. Phys. 2020, 59, SOOD06. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, G.; Wang, L.; Liu, Y.; Wei, L.; Zheng, Y.; Shao, Y. Wireless laser power transmission system for dynamic target using rotation of single component. Laser Optoelectron. Prog. 2022, 59, 1736001. [Google Scholar] [CrossRef]
- William Setiawan Putra, A.; Kato, H.; Adinanta, H.; Maruyama, T. Optical wireless power transmission to moving object using Galvano mirror. In Proceedings of the SPIE, San Francisco, CA, USA, 1–6 February 2020; p. 11272. [Google Scholar] [CrossRef]
- Zhou, W.; Jin, K. Optimal photovoltaic array configuration under Gaussian laser beam condition for wireless power transmission. IEEE Trans. Power Electron. 2017, 32, 3662–3672. [Google Scholar] [CrossRef]
- Takeda, K.; Kawashima, N. Laser energy transmission to a disaster data collection helicopter. Aerosp. Technol. Jpn. 2012, 11, 57–60. [Google Scholar] [CrossRef]
- Achtelik, M.C.; Stumpf, J.; Gurdan, D.; Doth, K.M. Design of a flexible high-performance quadcopter platform breaking the MAV endurance record with laser power beaming. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 5166–5172. [Google Scholar] [CrossRef]
- Laser-Powered Quadrocopter Endurance Demonstration by LaserMotive. Available online: https://www.youtube.com/watch?v=8hhv9Cu98us (accessed on 14 December 2024).
- Sprangle, P.; Hafizi, B.; Ting, A.; Fischer, R. High-power lasers for directed-energy applications. Appl. Opt. 2015, 54, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Intelligent Drones That Never Land! A New Breakthrough in Optics-Driven Drone Research at WSU! (Chinese). Northwestern Polytechnical University. Available online: https://m.cyol.com/gb/articles/2022-12/30/content_gGw7nbHlqV.html (accessed on 14 December 2024).
- Lim, Y.; Choi, Y.W.; Ryoo, J. Study on laser-powered aerial vehicle: Prolong flying time using 976 nm laser source. In Proceedings of the International Conference on Information and Communication Technology Convergence, Jeju Island, Republic of Korea, 20–22 October 2021; pp. 1220–1225. [Google Scholar] [CrossRef]
- Bauersfeld, L.; Scaramuzza, D. Range, endurance, and optimal speed estimates for multicopters. IEEE Robot. Autom. Lett. 2022, 7, 2953–2960. [Google Scholar] [CrossRef]
- Subudh, B.; Pradhan, R. A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Trans. Sustain. Energy 2012, 4, 1. [Google Scholar] [CrossRef]
- Lee, S.; Lim, N.; Choi, W.; Lee, Y.; Baek, J.; Park, J. Study on battery charging converter for MPPT control of laser wireless power transmission system. Electronics 2020, 9, 1745. [Google Scholar] [CrossRef]
- Tang, J.; Matsunaga, K.; Miyamoto, T. Numerical analysis of power generation characteristics in beam irradiation control of indoor OWPT system. Opt. Rev. 2020, 27, 170–176. [Google Scholar] [CrossRef]
- Shen, C.; Ling, X.; Li, Y.; Chen, S.; Deng, Y. Practical efficiency limit of laser power converters based on lead halide perovskite. Appl. Phys. Lett. 2023, 123, 153301. [Google Scholar] [CrossRef]
- Miyamoto, T.; Ueda, K.; Zhang, J.; Tsuruta, K. Optical wireless power transmission technology for indoor equipment and mobilities. Rev. Laser Eng. 2023, 51, 122–128. [Google Scholar]
- Xiao, Y.; Wang, J.; Liu, H.; Miao, P.; Gou, Y.; Zhang, Z.; Deng, G.; Zhou, S. Multi-junction cascaded vertical-cavity surface-emitting laser with a high power conversion efficiency of 74%. Light Sci. Appl. 2024, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Helmers, H.; Lopez, E.; Höhn, O.; Lackner, D.; Schön, J.; Schauerte, M.; Schachtner, M.; Dimroth, F.; Andreas Bett, A.W. 68.9% efficient GaAs-based photonic power conversion enabled by photon recycling and optical resonance. Phys. Status Solidi 2021, 15, 2100113. [Google Scholar] [CrossRef]
Focal Length of Lens (mm) | Light Output (W) | Flight Height (cm) |
---|---|---|
20 | 23.5 | 3 |
30 | 7 | |
70 | 30 | 25 |
35 | 35 | |
200 | 35 | 75 |
Reference | Kinki Univ. (2008) [27] | Powerlight Inc. (2010) [28,29] | Naval Research Lab. (2014) [30] | Northwestern Polytechnical Univ. (2023) [31] | This Work |
---|---|---|---|---|---|
Size | 60 cm sq. * | 50 cm sq.* | 50 cm sq * | 30 cm sq. * | 12 cm sq. |
Solar cell Size | 30 cm φ | 30 cm sq * | 30 cm φ * | 10 cm sq. * | 5 cm sq. |
Weight | 1.2 kg | 1.05 kg | 1.7 kg | 300 g * | 37.1 g |
Battery weight | 40 g * | 100 g | - | - | 0 g |
Light output | 560 W | 400 W * | 2 kW | 200 W * | 23.5 W |
Flight height/size (min/cm) (Flight height) | 10 * (6 m *) | 80 (40 m) | 4 * (2 m *) | 20 * (6 m *) | 6 (75 cm) |
Flight time/size (min/cm) (Flight time) | 2 (2 h) | 15 (12.5 h) | - | - | 5.5 (60 min.) |
Beam control optics | Collimator | - | Collimator | - | Imaging lens system |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watamura, T.; Nagasaka, T.; Kikuchi, Y.; Miyamoto, T. Flying a Micro-Drone by Dynamic Charging for Vertical Direction Using Optical Wireless Power Transmission. Energies 2025, 18, 351. https://doi.org/10.3390/en18020351
Watamura T, Nagasaka T, Kikuchi Y, Miyamoto T. Flying a Micro-Drone by Dynamic Charging for Vertical Direction Using Optical Wireless Power Transmission. Energies. 2025; 18(2):351. https://doi.org/10.3390/en18020351
Chicago/Turabian StyleWatamura, Tomoya, Takuo Nagasaka, Yuto Kikuchi, and Tomoyuki Miyamoto. 2025. "Flying a Micro-Drone by Dynamic Charging for Vertical Direction Using Optical Wireless Power Transmission" Energies 18, no. 2: 351. https://doi.org/10.3390/en18020351
APA StyleWatamura, T., Nagasaka, T., Kikuchi, Y., & Miyamoto, T. (2025). Flying a Micro-Drone by Dynamic Charging for Vertical Direction Using Optical Wireless Power Transmission. Energies, 18(2), 351. https://doi.org/10.3390/en18020351