Research on the Formation Characteristics of Fog and Frost on Optical Windows of Unsealed Equipment Compartments in Aircrafts
Abstract
:1. Introduction
2. Numerical Methods and Verification
2.1. Numerical Methods for Fogging and Frosting
2.2. Comparison of Water-Vapor-Saturated Pressure Formulas
2.3. Experimental Verification of Fogging
2.4. Experimental Verification of Frosting
- (1)
- Frosting experiment model
- (2)
- Validation of the numerical method
3. Simulation Analysis of Frosting and Fogging on the Optical Window
3.1. Optical Window Cabin Section Model
3.2. Boundary Condition
3.3. Grid Independence Verification
3.4. Analysis of the Ground Working Condition
3.5. Analysis of the Descent Working Condition at High Altitude
- (1)
- Influence of cabin temperature
- (2)
- Influence of the optical window temperature
- (3)
- Influence of cabin humidity
- (4)
- Influence of the descent altitude
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, D.; Kim, C.; Lee, K.S. Frosting model for predicting macroscopic and local frost behaviors on a cold plate. Int. J. Heat Mass Transf. 2015, 82, 135–142. [Google Scholar] [CrossRef]
- You, S.; Li, W.; Ye, T.; Hu, F.; Zheng, W. Study on moisture condensation on the interior surface of buildings in high humidity climate. Build. Environ. 2017, 125, 39–48. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Y.Q.; Zhao, J.S. Optimization of the automotive air conditioning strategy based on the study of dewing phenomenon and defogging progress. Appl. Therm. Eng. 2020, 169, 114932. [Google Scholar] [CrossRef]
- Ene, A.; Catalin, T.; Florin, B.; Georgescu, M. Numerical assessment of the condensation phenomenon on a vehicle’s windshield. IOP Conf. Ser. Earth Environ. Sci. 2023, 1185, 012029. [Google Scholar] [CrossRef]
- Leriche, M.; Roessner, W.; Reister, H.; Weigand, B. Numerical Investigation of Droplets Condensation on a Windshield: Prediction of Fogging Behavior; SAE Technical Paper Series 2015.10.4271/2015-01-0360; SAE International: Warrendale, PA, USA, 2015. [Google Scholar]
- Wang, L.W.; Xu, D.D.; Xing, Z.W. A mathematical model for frost formation on ground aircraft (Conference Paper). Appl. Mech. Mater. 2012, 141, 147–151. [Google Scholar] [CrossRef]
- Norrefeldt, V.; Riedl, G. Investigation of the Impact of a Particle Foam Insulation on Airflow, Temperature Distribution, Pressure Profile and Frost Buildup on the Aircraft Structure. Aerospace 2021, 8, 359. [Google Scholar] [CrossRef]
- Yuan, W.; Yang, Z.; Yan, W.; Zhu, D.; Zhao, N.; Zhu, C. Quantitative Measurement Method for Ice Roughness on an Aircraft Surface. Aerospace 2022, 9, 739. [Google Scholar] [CrossRef]
- Ono, T.; Nagano, H.; Shiratori, S.; Shimano, K.; Kato, S. Analysis of Defogging Performance, Thermal Comfort, and Energy Saving for HVAC System Optimization in Passenger Vehicles. E3S Web Conf. 2019, 111, 1033. [Google Scholar] [CrossRef]
- Rabl, B. Heat pump air conditioning systems for optimized energy demand of electric vehicles. In SpringerBriefs in Applied Sciences and Technology; Springer: Cham, Switzerland, 2018; pp. 81–92. [Google Scholar]
- Ene, A.E.; Teodosiu, C. Analysis of demisting strategies for electric vehicles. Sci. Technol. Built Environ. 2024, 30, 87–100. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, J.H.; Bak, S.; Lee, K.; Li, Y.; Lee, H. Hybrid windshield-glass heater for commercial vehicles fabricated via enhanced electrostatic interactions among a substrate, silver nanowires, and an over-coating layer. Nano Res. 2015, 8, 1882–1892. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.W.; Song, R.; Gim, Y.; Kwon, H.; Ko, H.S.; Lee, J. Improvement of Defogging Performance of Automobile Defroster using Vortex Generators. Heat Mass Transf. 2020, 56, 2595–2604. [Google Scholar] [CrossRef]
- Kharat, R.B.; Nandgaonkar, M.R.; Kajale, S.R.; Ranade, V.V.; Mahajan, S.K. Modeling of In-Cabin Climate and Fogging of Windshield; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Kitada, M.; Asano, H.; Kataoka, T.; Hirayama, S.; Maruta, Y. Numerical Analysis of Transient Defogging Pattern on an Automobile; SAE Technical Papers 2002-01-0223; SAE International: Warrendale, PA, USA, 2002. [Google Scholar]
- Libin, T. Computational fluid dynamics simulation and performance optimization of an electrical vehicle Air-conditioning system. Alex. Eng. J. 2022, 61, 315–328. [Google Scholar]
- Sandhu, K.S. Predicting the windscreen demisting performance using CAE. In Vehicle Thermal Management Systems Conference and Exhibition (VTMS10); Woodhead Publishing: Cambridge, UK, 2011; pp. 401–410. [Google Scholar]
- Al-abidi, A.A.; Mat, S.B.; Sopian, K.; Sulaiman, M.Y.; Mohammed, A.T. CFD applications for latent heat thermal energy storage: A review. Renew. Sustain. Energy Rev. 2013, 20, 353–363. [Google Scholar] [CrossRef]
- Danaila, I.; Moglan, R.; Hecht, F.; Le Masson, S. A Newton method with adaptive finite elements for solving phase-change problems with natural convection. J. Comput. Phys. 2014, 274, 826–840. [Google Scholar] [CrossRef]
- Kheirabadi, A.C.; Groulx, D. The effect of the mushy-zone constant on simulated phase change heat transfer. In Proceedings of the CHT-15. 6th International Symposium on Advances in Computational Heat Transfer, New Brunswick, NJ, USA, 25–29 May 2015. [Google Scholar]
- Wexler, A. Vapor Pressure Formulation for Ice. J. Res. Notional Bur. Stand. A Phys. Chem. 1977, 81A, 5–20. [Google Scholar] [CrossRef]
- Tiwari, A.; Kondjoyan, A.; Fontaine, J.-P. Characterization of simultaneous heat and mass transfer phenomena for water vapour condensation on a solid surface in an abiotic environment—Application to bioprocesses. Appl. Biochem. Biotechnol. 2012, 167, 1132–1143. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Lan, Q.Y.; Liu, P.P.; Li, X.L.; Ding, G.L. Experimental Research and CFD Simulation of Frosting on Aluminum Surface. Fluid Mach. 2019, 47, 83–88. (In Chinese) [Google Scholar]
- Gao, H.; Weng, N.Q.; Sun, G.; Zhang, G.Y. Distribution Characteristics of high-altitude temperature and relative humidity in different regions of China. J. Atmos. Environ. Opt. 2012, 7, 101–107. (In Chinese) [Google Scholar]
- Liu, Y.; Dong, S.; Wang, P.; Wang, J. Design of thermal control system for high-altitude and high-speed unmanned vehicle. Beijing Hangkong Hangtian Daxue Xuebao/J. Beijing Univ. Aeronaut. Astronaut. 2005, 31, 834–838. [Google Scholar]
Mesh | Mesh0 | Mesh1 | Mesh2 |
---|---|---|---|
Encryption size of the refined area (mm) | 1 | 2 | 4 |
The size of the first layer of grid near the wall surface (mm) | 0.1 | 0.1 | 0.1 |
Total number of grids (×104) | 1738 | 720 | 589 |
Mesh | Mesh2 | Mesh3 | Mesh4 |
---|---|---|---|
Encryption size of the refined area (mm) | 4 | 4 | 4 |
The size of the first layer of grid near the wall surface (mm) | 0.1 | 0.05 | 0.2 |
Total number of grids (×104) | 589 | 589 | 589 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, C.; Liang, Y.; Wei, B.; Zhang, C.; Zhao, T. Research on the Formation Characteristics of Fog and Frost on Optical Windows of Unsealed Equipment Compartments in Aircrafts. Energies 2025, 18, 437. https://doi.org/10.3390/en18020437
Shen C, Liang Y, Wei B, Zhang C, Zhao T. Research on the Formation Characteristics of Fog and Frost on Optical Windows of Unsealed Equipment Compartments in Aircrafts. Energies. 2025; 18(2):437. https://doi.org/10.3390/en18020437
Chicago/Turabian StyleShen, Chun, Yuanyuan Liang, Bo Wei, Chengchun Zhang, and Tian Zhao. 2025. "Research on the Formation Characteristics of Fog and Frost on Optical Windows of Unsealed Equipment Compartments in Aircrafts" Energies 18, no. 2: 437. https://doi.org/10.3390/en18020437
APA StyleShen, C., Liang, Y., Wei, B., Zhang, C., & Zhao, T. (2025). Research on the Formation Characteristics of Fog and Frost on Optical Windows of Unsealed Equipment Compartments in Aircrafts. Energies, 18(2), 437. https://doi.org/10.3390/en18020437