Coal Gangue Utilization: Applications, Challenges, and Sustainable Development Strategies
Abstract
:1. Introduction
2. Physical and Chemical Features of Coal Gangue
2.1. Main Chemical Components
2.2. Physical Properties
3. Coal Gangue Applications
3.1. Production of Construction Materials
3.1.1. Coal Gangue Concrete
3.1.2. Bricks, Cement, and Other Building Materials
3.1.3. Environmental Impact of Coal Gangue in the Production of Building Materials
3.2. In the Energy Sector
3.2.1. Direct Use
3.2.2. Co-Utilization
3.2.3. Environmental Impact of Coal Gangue in Energy Applications
3.3. Agricultural Applications
3.3.1. Soil Improvement
3.3.2. Fertilizer Production
3.3.3. Environmental Impact of Coal Gangue in Agricultural Applications
3.4. High-Value Applications
3.4.1. Extraction of Valuable Components
3.4.2. Preparation of Catalysts and Adsorbents
3.4.3. Environmental Impact of Coal Gangue in High-Value Applications
4. Future Development Directions and Suggestions
5. Conclusions
Funding
Conflicts of Interest
References
- Zhao, Z.-Y.; Hao, Y.-X.; Chang, R.-D.; Wang, Q.-C. Assessing the vulnerability of energy supply chains: Influencing factors and countermeasures. Sustain. Energy Technol. Assess. 2023, 56, 103018. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Sun, Y.; Chen, J.; Streimikiene, D. Policy modeling consistency analysis during energy crises: Evidence from China’s coal power policy. Technol. Forecast. Soc. Change 2023, 197, 122931. [Google Scholar] [CrossRef]
- Li, D.; Wu, D.; Xu, F.; Lai, J.; Shao, L. Literature overview of Chinese research in the field of better coal utilization. J. Clean. Prod. 2018, 185, 959–980. [Google Scholar] [CrossRef]
- Zhang, Y.; Nie, R.; Shi, R.; Zhang, M. Measuring the capacity utilization of the coal sector and its decoupling with economic growth in China’s supply-side reform. Resour. Conserv. Recycl. 2018, 129, 314–325. [Google Scholar] [CrossRef]
- Song, W.; Zhang, J.; Li, M.; Yan, H.; Zhou, N.; Yao, Y.; Guo, Y. Underground Disposal of Coal Gangue Backfill in China. Appl. Sci. 2022, 12, 12060. [Google Scholar] [CrossRef]
- Shao, S.; Ma, B.; Wang, C.; Chen, Y. Extraction of valuable components from coal gangue through thermal activation and HNO3 leaching. J. Ind. Eng. Chem. 2022, 113, 564–574. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, S.; Zhang, W. Effect of coal gangue with different kaolin content son compressive strength and pore. J. Wuhan Univ. Technol.-Mat. Sci. Ed. 2008, 23, 12–15. [Google Scholar] [CrossRef]
- Wang, G.; Xie, Y.; Qin, Y.; Wang, J.; Shen, J.; Han, B.; Liang, C.; Wang, Q. Element geochemical characteristics and formation environment for the roof, floor and gangue of coal seams in the Gujiao mining area, Xishan coalfield, China. J. Geochem. Explor. 2018, 190, 336–344. [Google Scholar] [CrossRef]
- Ke, G.; Jiang, H.; Li, Z. Study on the calorific value and cementitious properties of coal gangue with 0-1 mm particle size. Constr. Build. Mater. 2024, 414, 135061. [Google Scholar] [CrossRef]
- Xue, G.; Li, S.; Hou, P.; Gao, S.; Tan, R. Research on lightweight Yolo coal gangue detection algorithm based on resnet18 backbone feature network. Internet Things 2023, 22, 100762. [Google Scholar] [CrossRef]
- Moghadam, M.J.; Ajalloeian, R.; Hajiannia, A. Preparation and application of alkali-activated materials based on waste glass and coal gangue: A review. Constr. Build. Mater. 2019, 221, 84–98. [Google Scholar] [CrossRef]
- Han, B.; Zhang, Y.; Zou, Z.; Wang, J.; Zhou, C. Study on controlling factors and developing a quantitative assessment model for spontaneous combustion hazard of coal gangue. Case Stud. Therm. Eng. 2024, 54, 104039. [Google Scholar] [CrossRef]
- Wu, F.; Liu, Y.; Gao, R. Challenges and opportunities of energy storage technology in abandoned coal mines: A systematic review. J. Energy Storage 2024, 83, 110613. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhou, Y.; Liu, X.; Liu, M.; Liao, L.; Lv, G. Environmental hazards and comprehensive utilization of solid waste coal gangue. Prog. Nat. Sci. Mater. Int. 2024, 34, 223–239. [Google Scholar] [CrossRef]
- Ju, Q.; Hu, Y.; Liu, Q.; Chai, H.; Chen, K.; Zhang, H.; Wu, Y. Source apportionment and ecological health risks assessment from major ions, metalloids and trace elements in multi-aquifer groundwater near the Sunan mine area, Eastern China. Sci. Total Environ. 2023, 860, 160454. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Li, S.; Ren, P.; Yan, F.; Wang, L.; Guo, B.; Zhao, Y.; Yang, Y.; Sun, J.; Gao, P.; et al. Enhancing the carbon content of coal gangue for composting through sludge amendment: A feasibility study. Environ. Pollut. 2024, 348, 123439. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zhao, D.; Chen, X.; Zheng, L.; Li, C.; Ren, M. Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons in groundwater in a coal mining area, China. Ecol. Indic. 2022, 136, 108683. [Google Scholar] [CrossRef]
- Xu, Z.; Qian, Y.; Hong, X.; Luo, Z.; Gao, X.; Liang, H. Contamination characteristics of polycyclic aromatic compounds from coal sources in typical coal mining areas in Huaibei area, China. Sci. Total Environ. 2023, 873, 162311. [Google Scholar] [CrossRef] [PubMed]
- Qing, Z.; Guijian, L.; Shuchuan, P.; Chuncai, Z.; Arif, M. Immobilization of hexavalent chromium in soil-plant environment using calcium silicate hydrate synthesized from coal gangue. Chemosphere 2022, 305, 135438. [Google Scholar] [CrossRef]
- Gasparotto, J.; Da Boit Martinello, K. Coal as an energy source and its impacts on human health. Energy Geosci. 2021, 2, 113–120. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, D.; Luo, X.; Zhang, Y. Effects of Setaria viridis on heavy metal enrichment tolerance and bacterial community establishment in high-sulfur coal gangue. Chemosphere 2024, 351, 141265. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, D.; Xin, H.; Qi, Z.; Zhang, W.; Zhang, K. Study on secondary oxidation characteristics of coal gangue at different pyrolysis rank. Fuel 2023, 345, 128231. [Google Scholar] [CrossRef]
- Liang, Y.; Liang, H.; Zhu, S. Mercury emission from spontaneously ignited coal gangue hill in Wuda coalfield, Inner Mongolia, China. Fuel 2016, 182, 525–530. [Google Scholar] [CrossRef]
- Zhai, X.; Wu, S.; Wang, K.; Drebenstedt, C.; Zhao, J. Environment influences and extinguish technology of spontaneous combustion of coal gangue heap of Baijigou coal mine in China. Energy Procedia 2017, 136, 66–72. [Google Scholar] [CrossRef]
- Li, X.; Qiao, Y.; Shao, J.; Bai, C.; Li, H.; Lu, S.; Zhang, X.; Yang, K.; Colombo, P. Sodium-based alkali-activated foams from self-ignition coal gangue by facile microwave foaming route. Ceram. Int. 2022, 48, 33914–33925. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Meng, Z.; Liu, L.; Wang, X.; Xing, Y. Integrated utilization of coal gangue for synthesis of β-Sialon multiphase ceramic materials. Ceram. Int. 2023, 49, 11275–11284. [Google Scholar] [CrossRef]
- Feng, D.; Wang, J.; Wang, Y.; Xiao, X.; Hou, W.; Liang, S. Alkali-activated geopolymer materials prepared from coal gangue and municipal solid waste incineration byproducts. J. Build. Eng. 2023, 80, 108074. [Google Scholar] [CrossRef]
- Jin, J.; Li, M.; Liu, T.; Chen, Y.; Qin, Z.; Liu, Q.; Liang, B.; Zhao, J.; Zuo, S. Insights into factors influencing coal gangue-filled backfill cemented by self-consolidating alkali-activated slag grouts. Constr. Build. Mater. 2024, 411, 134422. [Google Scholar] [CrossRef]
- Wang, H.; Xiong, R.; Zong, Y.; Li, L.; Guo, H.; Wang, Z.; Guan, B.; Chang, M. Effect of raw material ratio and sintering temperature on properties of coal gangue-feldspar powder artificial aggregate. Constr. Build. Mater. 2023, 384, 131400. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, X.; Zou, J.; Rao, Y.; Chen, L.; Zhang, L.; Ji, Y.; Liang, Z. Effects of water immersion on the pore structure and thermodynamic properties of coal gangue. Fuel 2023, 346, 128273. [Google Scholar] [CrossRef]
- Zhang, M.; Qu, Z.; Xie, M.; Chen, X.; Yang, Y.; Bai, Y. Research on the regulatory mechanism of pore structure in soil matrix prepared by fluidized bed calcination of coal gangue. Arab. J. Chem. 2024, 17, 105814. [Google Scholar] [CrossRef]
- Duan, X.; Huang, Y.; Li, Y.; Zhang, W.; Huang, Z. Evolution mechanism of pore structure in sintered coal gangue ceramsites. Ceram. Int. 2023, 49, 31385–31395. [Google Scholar] [CrossRef]
- Li, C.; Zhang, P.; Li, D. Study on low-cost preparation of glass–ceramic from municipal solid waste incineration (MSWI) fly ash and lead–zinc tailings. Constr. Build. Mater. 2022, 356, 129231. [Google Scholar] [CrossRef]
- Yu, L.; Feng, Y.; Yan, W. The Current Situation of Comprehensive Utilization of Coal Gangue in China. Adv. Mater. Res. 2012, 524–527, 915–918. [Google Scholar] [CrossRef]
- Li, Z.; Gao, Y.; Zhang, J.; Zhang, C.; Chen, J.; Liu, C. Effect of particle size and thermal activation on the coal gangue based geopolymer. Mater. Chem. Phys. 2021, 267, 124657. [Google Scholar] [CrossRef]
- Cheng, L.; Qin, Y.; Li, X.; Zhao, X. A Laboratory and Numerical Simulation Study on Compression Characteristics of Coal Gangue Particles with Optimal Size Distribution Based on Shape Statistics. Math. Probl. Eng. 2020, 2020, 046156. [Google Scholar] [CrossRef]
- Akdemir, Ü.; Sönmez, İ. Investigation of coal and ash recovery and entrainment in flotation. Fuel Process. Technol. 2003, 82, 1–9. [Google Scholar] [CrossRef]
- Huang, H.; Dou, D.; Liu, G. Modeling of coal and gangue volume based on shape clustering and image analysis. Int. J. Coal Prep. Util. 2023, 43, 329–345. [Google Scholar] [CrossRef]
- Long, G.; Li, L.; Li, W.; Ma, K.; Dong, W.; Bai, C.; Zhou, J.L. Enhanced mechanical properties and durability of coal gangue reinforced cement-soil mixture for foundation treatments. J. Clean. Prod. 2019, 231, 468–482. [Google Scholar] [CrossRef]
- Ma, Q.Q.; Liu, H. Analysis of Obstacle of Development and Application that Coal Gangue Used in China Road Engineering. Adv. Mater. Res. 2014, 900, 510–513. [Google Scholar] [CrossRef]
- Li, S.; Li, N. Effects of composition and temperature on porosity and pore size distribution of porous ceramics prepared from Al(OH)3 and kaolinite gangue. Ceram. Int. 2007, 33, 551–556. [Google Scholar] [CrossRef]
- Feng, D.; Wang, J.; Chen, D.; Hou, W.; Liang, S. Experimental study on municipal solid waste incineration fly ash as a component of coal gangue geopolymer and the feasibility of making geopolymer mortar. Constr. Build. Mater. 2023, 409, 133862. [Google Scholar] [CrossRef]
- Feng, X.; Liu, N.; Lu, X. Investigation of un-calcined coal gangue together with ground granulated blast furnace slag and fly ash to ambient-curing production high-strength geopolymer. J. Mater. Res. Technol. 2023, 25, 3985–3997. [Google Scholar] [CrossRef]
- Wen, B.; Huang, D.; Zhang, L.; Song, Q.; Gao, G.; Huo, D. Study on mechanical properties and size effect of coal gangue concrete at mesoscale. Constr. Build. Mater. 2022, 360, 129551. [Google Scholar] [CrossRef]
- Ye, T.; Min, X.; Li, X.; Zhang, S.; Gao, Y. Improved holding and releasing capacities of coal gangue toward phosphate through alkali-activation. Chemosphere 2022, 287, 132382. [Google Scholar] [CrossRef]
- Zhao, H.; Li, P.; He, X. Remediation of cadmium contaminated soil by modified gangue material: Characterization, performance and mechanisms. Chemosphere 2022, 290, 133347. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Pang, J.; Wang, X.; Chen, E.; Wu, D.; Ma, J. Coal gangue geopolymers as sustainable and cost-effective adsorbents for efficient removal of Cu (II). Environ. Technol. Innov. 2023, 32, 103416. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, G.; Fang, T.; Lam, P.K.S. Investigation on thermal and trace element characteristics during co-combustion biomass with coal gangue. Bioresour. Technol. 2015, 175, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Qiao, J.; Jia, R.; Wei, P.; Li, Y.; Ke, G. The influence of carbon imperfections on the physicochemical characteristics of coal gangue aggregates. Constr. Build. Mater. 2023, 409, 133965. [Google Scholar] [CrossRef]
- Guo, Z.; Xu, J.; Xu, Z.; Gao, J.; Zhu, X. Performance of cement-based materials containing calcined coal gangue with different calcination regimes. J. Build. Eng. 2022, 56, 104821. [Google Scholar] [CrossRef]
- Zhang, J.; Han, H.; Wang, L. Pozzolanic activity experimental dataset of calcined coal gangue. Data Brief 2023, 51, 109802. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cao, M.; Zhang, K.; Yuan, J.; Wang, Y. Wrapped coal gangue aggregate enhancement ITZ and mechanical property of concrete suitable for large-scale industrial use. J. Build. Eng. 2023, 72, 106649. [Google Scholar] [CrossRef]
- Wu, J.; Bai, G.; Wang, P.; Liu, Y. Mechanical properties of a new type of block made from shale and coal gangue. Constr. Build. Mater. 2018, 190, 796–804. [Google Scholar] [CrossRef]
- Zhao, G.; Wu, T.; Ren, G.; Zhu, Z.; Gao, Y.; Shi, M.; Ding, S.; Fan, H. Reusing waste coal gangue to improve the dispersivity and mechanical properties of dispersive soil. J. Clean. Prod. 2023, 404, 136993. [Google Scholar] [CrossRef]
- Cao, D.; Ji, J.; Liu, Q.; He, Z.; Wang, H.; You, Z. Coal Gangue Applied to Low-Volume Roads in China. Transp. Res. Rec. 2011, 2204, 258–266. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Yan, C.; Bold, T.; Wang, J.; Cui, K. Effect of activated coal gangue on the hydration and hardening of Portland cement. Constr. Build. Mater. 2024, 422, 135740. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Nian, P.; Wang, W.; Wei, D.; Xu, N.; Wu, Z.; Zhu, T.; Wei, Y. Reaction-bonded robust SiC ceramic membranes sintered at low temperature with coal gangue. Ceram. Int. 2023, 49, 19798–19805. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Guan, X. Multitechnique investigation of concrete with coal gangue. Constr. Build. Mater. 2021, 301, 124114. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, T.; Gao, X. Incorporation of self-ignited coal gangue in steam cured precast concrete. J. Clean. Prod. 2021, 292, 126004. [Google Scholar] [CrossRef]
- Yu, L.; Xia, J.; Xia, Z.; Gu, J.; Xu, H.; Wang, Y. Axial compressive behavior of basalt and carbon FRP-confined coal gangue concrete. Constr. Build. Mater. 2023, 371, 130803. [Google Scholar] [CrossRef]
- Yu, L.; Xia, J.; Xia, Z.; Chen, M.; Wang, J.; Zhang, Y. Study on the mechanical behavior and micro-mechanism of concrete with coal gangue fine and coarse aggregate. Constr. Build. Mater. 2022, 338, 127626. [Google Scholar] [CrossRef]
- Liu, H.; Bai, G.; Gu, Y.; Yan, F. The influence of coal gangue coarse aggregate on the mechanical properties of concrete columns. Case Stud. Constr. Mater. 2022, 17, e01315. [Google Scholar] [CrossRef]
- Zhang, T.; Wen, Q.; Gao, S.; Tang, J. Comparative study on mechanical and environmental properties of coal gangue sand concrete. Constr. Build. Mater. 2023, 400, 132646. [Google Scholar] [CrossRef]
- Xiao, G.; Yang, G.; Jixi, C.; Ruyi, Z. Deterioration mechanism of coal gangue concrete under the coupling action of bending load and freeze–thaw. Constr. Build. Mater. 2022, 338, 127265. [Google Scholar] [CrossRef]
- Al Khazaleh, M.; Kumar, P.K.; Mohamed, M.J.S.; Kandasamy, A. Influence of coarse coal gangue aggregates on properties of structural concrete with nano silica. Mater. Today Proc. 2023, 72, 2089–2095. [Google Scholar] [CrossRef]
- Gao, W.-C.; Zhang, X.-L.; Du, G.-Z.; Ma, Y.-P.; Fan, J.-B.; Geng, Y.; Zhang, H. Shrinkage model for concrete incorporating coal gangue coarse and fine aggregates. J. Build. Eng. 2023, 80, 107865. [Google Scholar] [CrossRef]
- Sun, J.; Liu, S.; Ma, Z.; Qian, H.; Wang, Y.; Al-azzani, H.; Wang, H. Mechanical properties prediction of lightweight coal gangue shotcrete. J. Build. Eng. 2023, 80, 108088. [Google Scholar] [CrossRef]
- Moussadik, A.; Ouzoun, F.; Ez-zaki, H.; Saadi, M.; Diouri, A. Mineralogical study of a binder based on alkali-activated coal gangue. Mater. Today Proc. 2023, 260256556. [Google Scholar] [CrossRef]
- Luo, L.; Li, K.; Fu, W.; Liu, C.; Yang, S. Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings. Constr. Build. Mater. 2020, 232, 117250. [Google Scholar] [CrossRef]
- Qiu, J.; Cheng, K.; Zhang, R.; Gao, Y.; Guan, X. Study on the influence mechanism of activated coal gangue powder on the properties of filling body. Constr. Build. Mater. 2022, 345, 128071. [Google Scholar] [CrossRef]
- Cheng, Y.; Shen, H.; Zhang, J. Understanding the effect of high-volume fly ash on micro-structure and mechanical properties of cemented coal gangue paste backfill. Constr. Build. Mater. 2023, 378, 131202. [Google Scholar] [CrossRef]
- Jiu, S.; Cheng, S.; Li, H.; Wang, L. Reaction mechanism of metakaolin materials prepared by calcining coal gangue. Mater. Res. Express 2021, 8, 015508. [Google Scholar] [CrossRef]
- Cai, B.; Li, K.; Fu, F. Flexural behavior of steel fiber-reinforced coal gangue aggregate concrete beams. Structures 2023, 52, 131–145. [Google Scholar] [CrossRef]
- Cao, Z.; Cao, Y.; Dong, H.; Zhang, J.; Sun, C. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue. Int. J. Miner. Process. 2016, 146, 23–28. [Google Scholar] [CrossRef]
- Guan, X.; Chen, J.; Zhu, M.; Gao, J. Performance of microwave-activated coal gangue powder as auxiliary cementitious mate-rial. J. Mater. Res. Technol. 2021, 14, 2799–2811. [Google Scholar] [CrossRef]
- Li, Y.; Yao, Y.; Liu, X.; Sun, H.; Ni, W. Improvement on pozzolanic reactivity of coal gangue by integrated thermal and chemical activation. Fuel 2013, 109, 527–533. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, C.; Qu, F.; Li, K.; Yang, J.; Wu, Z. Mechanical Properties and Drying Shrinkage of Alkali-Activated Coal Gangue Concrete. Sustainability 2022, 14, 14736. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, Y.; Wang, T.; Xia, J.; Lu, M.; Xue, Y. Kill two birds with one stone: Contribution of steel slag on enhancing the performance of coal gangue-based cementitious materials and simultaneous sulfur fixation. J. Environ. Chem. Eng. 2023, 11, 111169. [Google Scholar] [CrossRef]
- Wang, J.; Qin, Q.; Hu, S.; Wu, K. A concrete material with waste coal gangue and fly ash used for farmland drainage in high groundwater level areas. J. Clean. Prod. 2016, 112, 631–638. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, G.; Guo, L.; Zhou, L.; Yuan, K. Utilization of coal gangue as coarse aggregates in structural concrete. Constr. Build. Mater. 2021, 268, 121212. [Google Scholar] [CrossRef]
- Qin, L.; Gao, X. Properties of coal gangue-Portland cement mixture with carbonation. Fuel 2019, 245, 1–12. [Google Scholar] [CrossRef]
- Zhang, X.; Pang, S.; Su, L.; Geng, J.; Cai, G.; Liu, J. Triaxial mechanical properties and microscopic characterization of fiber-reinforced cement stabilized aeolian sand–coal gangue blends. Constr. Build. Mater. 2022, 346, 128481. [Google Scholar] [CrossRef]
- Wang, C.; Duan, D.; Huang, D.; Chen, Q.; Tu, M.; Wu, K.; Wang, D. Lightweight ceramsite made of recycled waste coal gangue & municipal sludge: Particular heavy metals, physical performance and human health. J. Clean. Prod. 2022, 376, 134309. [Google Scholar] [CrossRef]
- Liu, S.; Jin, J.; Yu, H.; Gao, Y.; Du, Y.; Sun, X.; Qian, G. Performance enhancement of modified asphalt via coal gangue with microstructure control. Constr. Build. Mater. 2023, 367, 130287. [Google Scholar] [CrossRef]
- Li, J.; Cao, Y.; Sha, A.; Song, R.; Li, C.; Wang, Z. Prospective application of coal gangue as filler in fracture-healing behavior of asphalt mixture. J. Clean. Prod. 2022, 373, 133738. [Google Scholar] [CrossRef]
- Dong, J.; Li, J.; Huang, Y.; Zhong, J.; Dun, K.; Wu, M.; Zhang, L.; Chen, Q.; Pan, B. Understanding the release, migration, and risk of heavy metals in coal gangue: An approach by combining experimental and computational investigations. J. Hazard. Mater. 2024, 461, 132707. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946. [Google Scholar] [CrossRef]
- Wang, J.L.; Hu, S.R.; Peng, J.C.; Zhang, Y.X.; Tong, W.B.; Chen, M.; Ji, C. Research Environmental Pollution and Management of Coal Gangue in Pingdingshan. Adv. Mater. Res. 2013, 807–809, 750–755. [Google Scholar] [CrossRef]
- Du, Z.; Hong, X.; Yang, K.; Wang, Z.; Zhang, Y.; Wang, X.; Zhang, L.; Zhu, Y. Enrichment characteristics of polycyclic aromatic hydrocarbons in coal gangue of the Huaibei Coalfield, China. Environ. Technol. Innov. 2024, 36, 103769. [Google Scholar] [CrossRef]
- Paoli, L.; Guttová, A.; Grassi, A.; Lackovičová, A.; Senko, D.; Loppi, S. Biological effects of airborne pollutants released during cement production assessed with lichens (SW Slovakia). Ecol. Indic. 2014, 40, 127–135. [Google Scholar] [CrossRef]
- Li, J.; Feng, H.; Liu, Y.; Zhang, J.; Ma, Y.; Ma, T. Determining the optimal gradation of mixed recycled aggregate containing coal gangue brick aggregate. Case Stud. Constr. Mater. 2024, 20, e02968. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, H.; Liu, L.; Ji, R.; Wang, X. Preparation and characterization of permeable bricks from gangue and tailings. Constr. Build. Mater. 2017, 148, 484–491. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, G.; Cheng, S.; Fang, T.; Lam, P.K.S. The Environmental Geochemistry of Trace Elements and Naturally Radionuclides in a Coal Gangue Brick-Making Plant. Sci. Rep. 2014, 4, 6221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ling, T.-C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials—A review. Constr. Build. Mater. 2020, 234, 117424. [Google Scholar] [CrossRef]
- Cui, J.P.; Liu, Y.; Wang, Z.H.; Gong, X.Z.; Gao, F.; Zhao, L.L.; Hao, L. Life Cycle Assessment of Cement Clinker Production Using Coal Gangue as Alternative Raw Material and Fuel. Mater. Sci. Forum 2015, 814, 435–440. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Q.; Long, B.; Cheng, Z.; Wang, H.; Wang, D. Utilization of coal gangue power generation industry by-product CFA in cement: Workability, rheological behavior and microstructure of blended cement paste. Fuel 2023, 345, 128185. [Google Scholar] [CrossRef]
- Huang, X.; Jin, X.; Dong, L.; Li, R.; Yang, K.; Li, Y.; Deng, L.; Che, D. CPFD numerical study on tri-combustion characteristics of coal, biomass and oil sludge in a circulating fluidized bed boiler. J. Energy Inst. 2024, 113, 101550. [Google Scholar] [CrossRef]
- Yuansheng, H.; Mengshu, S. What are the environmental advantages of circulating fluidized bed technology?—A case study in China. Energy 2021, 220, 119711. [Google Scholar] [CrossRef]
- Yan, Y. Analysis and Discussion on Burning Low Calorific Value Fuel of Circulating Fluidized Bed Boiler. E3S Web Conf. 2021, 329, 01074. [Google Scholar] [CrossRef]
- Peng, H.; Li, Y.; Jia, X. Experimental study on thermoelectric generation Device based on accumulated temperature waste heat of coal gangue. Energy Rep. 2022, 8, 210–219. [Google Scholar] [CrossRef]
- Zhang, H.; Shu, Y.; Yue, S.; Yu, W.; Zhang, Y.; Wang, X. Process design and optimization on self-sustaining pyrolysis and carbonization of ultra-low calorific value coal gangue. Sustain. Energy Technol. Assess. 2023, 60, 103491. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, L.; Zhang, Y.; Wang, Z.; Ma, Y.; Li, X. Feasibility investigation of utilizing spontaneous combustion energy of abandoned coal gangue by constructing a novel artificial heat reservoir. J. Clean. Prod. 2022, 373, 133948. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Q.; Zhang, S.; Li, Y.; Yang, L. The thermal transformation behavior and products of pyrite during coal gangue combustion. Fuel 2022, 324, 124803. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, G.; Yan, Z.; Fang, T.; Wang, R. Transformation behavior of mineral composition and trace elements during coal gangue combustion. Fuel 2012, 97, 644–650. [Google Scholar] [CrossRef]
- Wang, S.; Luo, K.; Wang, X.; Sun, Y. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories. Environ. Pollut. 2016, 209, 107–113. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, G.; Xu, Z.; Sun, H.; Lam, P.K.S. The retention mechanism, transformation behavior and environmental implication of trace element during co-combustion coal gangue with soybean stalk. Fuel 2017, 189, 32–38. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Liu, L.; Wang, X.; Zhang, Z. Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions. Waste Manag. 2016, 50, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Jia, X.; Song, C.; Yun, F.; Hao, S.; Ding, Y.; Liu, S.; Lei, M. Investigation of mitigation of nitric oxide emission characteristics and slagging properties from biomass combustion by the additive of coal gangue. J. Environ. Chem. Eng. 2022, 10, 107573. [Google Scholar] [CrossRef]
- Liu, L.; Ren, S.; Yang, J.; Jiang, D.; Guo, J.; Pu, Y.; Meng, X. Experimental study on K migration, ash fouling/slagging behaviors and CO2 emission during co-combustion of rice straw and coal gangue. Energy 2022, 251, 123950. [Google Scholar] [CrossRef]
- Ma, Z.; Cheng, L.; Li, L.; Luo, G.; Zhang, W.; Wu, Y. Pollutant emission and attrition performance of low calorific blended coals during co-combustion in fluidized bed. Fuel 2023, 331, 125782. [Google Scholar] [CrossRef]
- Bi, H.; Wang, C.; Lin, Q.; Jiang, X.; Jiang, C.; Bao, L. Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via TG-FTIR. Energy 2020, 213, 118790. [Google Scholar] [CrossRef]
- Shafizadeh, A.; Shahbeik, H.; Rafiee, S.; Fardi, Z.; Karimi, K.; Peng, W.; Chen, X.; Tabatabaei, M.; Aghbashlo, M. Machine learning-enabled analysis of product distribution and composition in biomass-coal co-pyrolysis. Fuel 2024, 355, 129464. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Ma, Z.; Yang, F.; Cheng, F. Effect of oxygen concentration on oxy-fuel combustion characteristic and interactions of coal gangue and pine sawdust. Waste Manag. 2019, 87, 288–294. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zhu, M.; Cheng, F.; Zhang, D. Interactions of coal gangue and pine sawdust during combustion of their blends studied using differential thermogravimetric analysis. Bioresour. Technol. 2016, 214, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Hu, Y.; Wang, W. Co-gasification of coal gangue and pine sawdust on a self-made two-stage fixed bed: Effect of mixing ratio. Int. J. Hydrogen Energy 2022, 47, 21713–21724. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Cheng, X.; Yan, K.; Zhao, W.; Yang, F. Air and oxy-fuel combustion characteristics of coal gangue and weathered coal blends. Energy 2023, 284, 128660. [Google Scholar] [CrossRef]
- Wu, M.; Li, H.; Wang, L.; Feng, S.; Wang, Y.; Yang, N.; Wang, K.; Yu, M. Investigation on coal/coal gangue mixtures co-combustion via TG-DSC tests, multicomponent reaction model, and artificial neural network. Fuel 2024, 359, 130443. [Google Scholar] [CrossRef]
- Li, J.; Hu, X.; Qiao, X. Thermogravimetric experimental study on the co-combustion of coal gangue and polypropylene. Thermochim. Acta 2023, 732, 179660. [Google Scholar] [CrossRef]
- Bi, H.; Ni, Z.; Tian, J.; Wang, C.; Jiang, C.; Zhou, W.; Bao, L.; Sun, H.; Lin, Q. Influence of biomass on multi-component reaction model and combustion products of coal gangue. Combust. Flame 2022, 240, 111999. [Google Scholar] [CrossRef]
- Zhu, B.; Dong, X.; Fan, Y.; Ma, X.; Fu, Y.; Chang, M.; Xue, H. Investigation on pyrolysis mechanism and emission characteristics of CO2, NOx and SO2 during co-pyrolysis of coal gangue and sodium alginate/sodium carboxymethylcellulose/chitosan/guar gum. Fuel 2024, 356, 129600. [Google Scholar] [CrossRef]
- Bi, H.; Ni, Z.; Jiang, C.; Zhou, W.; Sun, H.; Lin, Q.; He, L. Thermal degradation of cellulose and coal gangue based on lumped reaction model and principal component analysis. Combust. Flame 2022, 245, 112290. [Google Scholar] [CrossRef]
- Bi, H.; Ni, Z.; Tian, J.; Wang, C.; Jiang, C.; Zhou, W.; Bao, L.; Sun, H.; Lin, Q. The effect of biomass addition on pyrolysis characteristics and gas emission of coal gangue by multi-component reaction model and TG-FTIR-MS. Sci. Total Environ. 2021, 798, 149290. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Wang, C.; Lin, Q.; Jiang, X.; Jiang, C.; Bao, L. Pyrolysis characteristics, artificial neural network modeling and environmental impact of coal gangue and biomass by TG-FTIR. Sci. Total Environ. 2021, 751, 142293. [Google Scholar] [CrossRef]
- Ni, Z.; Bi, H.; Jiang, C.; Tian, J.; Sun, H.; Zhou, W.; Lin, Q. Research on the co-pyrolysis of coal gangue and coffee industry residue based on machine language: Interaction, kinetics, and thermodynamics. Sci. Total Environ. 2022, 804, 150217. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Ni, Z.; Tian, J.; Jiang, C.; Sun, H.; Lin, Q. Influence of lignin on coal gangue pyrolysis and gas emission based on multi-lump parallel reaction model and principal component analysis. Sci. Total Environ. 2022, 820, 153083. [Google Scholar] [CrossRef] [PubMed]
- Hobson, D.M.; Carter, R.; Yan, Y.; Lv, Z. Differentiation between Coal and Stone through Image Analysis of Texture Features. In Proceedings of the 2007 IEEE International Workshop on Imaging Systems and Techniques, Krakow, Poland, 5 May 2007; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, Y.; Nakano, J.; Liu, L.; Wang, X.; Zhang, Z. Trace element partitioning behavior of coal gangue-fired CFB plant: Experimental and equilibrium calculation. Environ. Sci. Pollut. Res. 2015, 22, 15469–15478. [Google Scholar] [CrossRef] [PubMed]
- Su, R.J. Study and Analysis on Pollution of Expanding Project of Coal Gangue Power Plant. Adv. Mater. Res. 2012, 485, 518–521. [Google Scholar] [CrossRef]
- Kumari, M.; Bhattacharya, T. A review on bioaccessibility and the associated health risks due to heavy metal pollution in coal mines: Content and trend analysis. Environ. Dev. 2023, 46, 100859. [Google Scholar] [CrossRef]
- Dai, R.; Zhao, R.; Wang, Z.; Qin, J.; Chen, T.; Wu, J. Study on the oxy-fuel co-combustion of coal gangue and semicoke and the pollutants emission characteristics. J. Fuel Chem. Technol. 2022, 50, 152–159. [Google Scholar] [CrossRef]
- Chuncai, Z.; Guijian, L.; Dun, W.; Ting, F.; Ruwei, W.; Xiang, F. Mobility behavior and environmental implications of trace elements associated with coal gangue: A case study at the Huainan Coalfield in China. Chemosphere 2014, 95, 193–199. [Google Scholar] [CrossRef]
- Hua, C.; Zhou, G.; Yin, X.; Wang, C.; Chi, B.; Cao, Y.; Wang, Y.; Zheng, Y.; Cheng, Z.; Li, R. Assessment of heavy metal in coal gangue: Distribution, leaching characteristic and potential ecological risk. Environ. Sci. Pollut. Res. 2018, 25, 32321–32331. [Google Scholar] [CrossRef]
- Halecki, W.; Klatka, S. Long term growth of crop plants on experimental plots created among slag heaps. Ecotoxicol. Environ. Saf. 2018, 147, 86–92. [Google Scholar] [CrossRef]
- Song, W.; Xu, R.; Li, X.; Min, X.; Zhang, J.; Zhang, H.; Hu, X.; Li, J. Soil reconstruction and heavy metal pollution risk in reclaimed cultivated land with coal gangue filling in mining areas. CATENA 2023, 228, 107147. [Google Scholar] [CrossRef]
- Guo, G.; Li, H.; Zha, J. An approach to protect cultivated land from subsidence and mitigate contamination from colliery gangue heaps. Process Saf. Environ. Prot. 2019, 124, 336–344. [Google Scholar] [CrossRef]
- Marchuk, S.; Marchuk, A. Effect of applied potassium concentration on clay dispersion, hydraulic conductivity, pore structure and mineralogy of two contrasting Australian soils. Soil. Tillage Res. 2018, 182, 35–44. [Google Scholar] [CrossRef]
- Li, X.; Zheng, J.; Zheng, K.; Su, F.; Zhao, Z.; Bai, C.; Zheng, T.; Wang, X.; Qiao, Y.; Colombo, P. Rapid fabrication of coal gangue-based alkali activated foams and application as pH regulators. Mater. Lett. 2023, 338, 134020. [Google Scholar] [CrossRef]
- Haghighizadeh, A.; Rajabi, O.; Nezarat, A.; Hajyani, Z.; Haghmohammadi, M.; Hedayatikhah, S.; Delnabi Asl, S.; Aghababai Beni, A. Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arab. J. Chem. 2024, 17, 105777. [Google Scholar] [CrossRef]
- Ge, Q.; Tian, Q.; Wang, S.; Zhu, F. Synergistic effects of phosphoric acid modified hydrochar and coal gangue-based zeolite on bioavailability and accumulation of cadmium and lead in contaminated soil. Chin. J. Chem. Eng. 2022, 46, 150–160. [Google Scholar] [CrossRef]
- Zhu, X.; Gong, W.; Li, W.; Bai, X.; Zhang, C. Reclamation of waste coal gangue activated by Stenotrophomonas maltophilia for mine soil improvement: Solubilizing behavior of bacteria on nutrient elements. J. Environ. Manag. 2022, 320, 115865. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.; Ying, W.; Jun, W. Research on Potential Fertilization of Coal Gangue in the Weibei Coalfield, China. Acta Geol. Sin.-Engl. Ed. 2008, 82, 717–721. [Google Scholar] [CrossRef]
- Lv, B.; Zhao, Z.; Deng, X.; Fang, C.; Dong, B.; Zhang, B. Sustainable and clean utilization of coal gangue: Activation and preparation of silicon fertilizer. J. Mater. Cycles Waste Manag. 2022, 24, 1579–1590. [Google Scholar] [CrossRef]
- Wang, B.; Ma, Y.; Lee, X.; Wu, P.; Liu, F.; Zhang, X.; Li, L.; Chen, M. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer. Sci. Total Environ. 2021, 758, 143664. [Google Scholar] [CrossRef]
- Wu, H.; Kang, S.; Zhang, H.; Sun, Q.; Shen, R.; Shu, Z. Research of the workability, mechanical and hydration mechanism of coal gangue-construction solid waste backfilling materials. Constr. Build. Mater. 2023, 408, 133833. [Google Scholar] [CrossRef]
- Chu, Z.; Wang, X.; Wang, Y.; Zha, F.; Dong, Z.; Fan, T.; Xu, X. Influence of coal gangue aided phytostabilization on metal availability and mobility in copper mine tailings. Environ. Earth Sci. 2020, 79, 68. [Google Scholar] [CrossRef]
- Tang, Q.; Li, L.; Zhang, S.; Zheng, L.; Miao, C. Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area. J. Geochem. Explor. 2018, 186, 1–11. [Google Scholar] [CrossRef]
- Zhang, P.; Han, Z.; Jia, J.; Wei, C.; Liu, Q.; Wang, X.; Zhou, J.; Li, F.; Miao, S. Occurrence and Distribution of Gallium, Scandium, and Rare Earth Elements in Coal Gangue Collected from Junggar Basin, China. Int. J. Coal Prep. Util. 2019, 39, 389–402. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Lü, G.; Zhang, T.; Gong, Y. Kinetics of alumina extraction from coal gangue by hydrochloric acid leaching. Trans. Nonferrous Met. Soc. China 2023, 33, 1932–1942. [Google Scholar] [CrossRef]
- Miao, H.; Wang, Z.; Wang, Z.; Sun, H.; Li, X.; Liu, Z.; Dong, L.; Zhao, J.; Huang, J.; Fang, Y. Effects of Na2CO3/Na2SO4 on catalytic gasification reactivity and mineral structure of coal gangue. Energy 2022, 255, 124498. [Google Scholar] [CrossRef]
- Xie, M.; Liu, F.; Zhao, H.; Ke, C.; Xu, Z. Mineral phase transformation in coal gangue by high temperature calcination and high-efficiency separation of alumina and silica minerals. J. Mater. Res. Technol. 2021, 14, 2281–2288. [Google Scholar] [CrossRef]
- Peng, B.; Li, X.; Zhao, W.; Yang, L. Study on the release characteristics of chlorine in coal gangue under leaching conditions of different pH values. Fuel 2018, 217, 427–433. [Google Scholar] [CrossRef]
- Liu, F.; Xie, M.; Yu, G.; Ke, C.; Zhao, H. Study on Calcination Catalysis and the Desilication Mechanism for Coal Gangue. ACS Sustain. Chem. Eng. 2021, 9, 10318–10325. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, L.; Liu, L.; Yang, Y.; Liu, Q. Iron removal from kaolinitic coal gangue via magnetic separation after oxidizing calcination with the crystal structure of kaolinite protected. Mater. Today Commun. 2023, 37, 107175. [Google Scholar] [CrossRef]
- Qin, Q.; Geng, H.; Deng, J.; Xu, H.; Ye, Y.; Li, B.; Gui, X.; Park, C. Waste-free technologies of coal gangue processing: Extraction of metals and improvement of soil. Sep. Purif. Technol. 2025, 361, 131203. [Google Scholar] [CrossRef]
- Wang, H.; Cao, Z.; Wang, J.; Wang, Z.; Chen, J.; Shen, L. Alkali Methods for Alumina Extraction from the By-products of High Alumina Coal: A Review. Min. Metall. Explor. 2023, 40, 1681–1694. [Google Scholar] [CrossRef]
- Xiao, J.; Li, F.; Zhong, Q.; Bao, H.; Wang, B.; Huang, J.; Zhang, Y. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC. Hydrometallurgy 2015, 155, 118–124. [Google Scholar] [CrossRef]
- Miao, H.; Wang, Z.; Sun, H.; Li, X.; Mei, Y.; Liu, Z.; Dong, L.; Huang, J.; Bai, J.; Fang, Y. Gasification and activation behaviors of coal gangue with Na2CO3 in CO2 atmosphere. Fuel Process. Technol. 2022, 228, 107163. [Google Scholar] [CrossRef]
- Dai, S.; Sun, F.; Wang, L.; Wang, L.; Zhang, R.; Guo, H.; Xing, Y.; Gui, X. A new method for pre-enrichment of gallium and lithium based on mode of occurrence in coal gangue from Antaibao surface mine, Shanxi Province, China. J. Clean. Prod. 2023, 425, 138968. [Google Scholar] [CrossRef]
- Zhu, X.; Gong, W.; Li, W.; Zhang, C. Fixating lead in coal gangue with phosphate using phosphate-dissolving bacteria: Phosphorus dissolving characteristics of bacteria and adsorption mechanism of extracellular polymer. J. Hazard. Mater. 2023, 458, 131923. [Google Scholar] [CrossRef]
- Du, S.; Mao, S.; Guo, F.; Dong, K.; Shu, R.; Bai, J.; Xu, L.; Li, D. Investigation of the catalytic performance of coal gangue char on biomass pyrolysis in a thermogravimetric analyzer and a fixed bed reactor. Fuel 2022, 328, 125216. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, Y.; Zheng, X.; Han, J.; Wang, B.; Wu, Q.; Bai, G. Fabrication of dual-activated coal gangue-loaded nickel-based catalyst for dioctyl phthalate hydrogenation. Mol. Catal. 2024, 553, 113732. [Google Scholar] [CrossRef]
- Li, H.; Cheng, R.; Liu, Z.; Du, C. Waste control by waste: Fenton–like oxidation of phenol over Cu modified ZSM–5 from coal gangue. Sci. Total Environ. 2019, 683, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, L.; Liu, Z.; Du, C. Cu, Ag–containing systems based on coal gangue as catalysts for highly efficient antibiotics removal via persulfate activation under visible light irradiation. J. Environ. Chem. Eng. 2021, 9, 105016. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, H.; Liu, Z.; Du, C. Natural coal gangue activated persulfate for tetracycline hydrochloride degradation: Mechanisms, theoretical calculations, and comparative study. J. Mol. Struct. 2023, 1291, 136097. [Google Scholar] [CrossRef]
- Li, C.; Yin, S.; Yan, Y.; Liang, C.; Ma, Q.; Guo, R.; Zhang, Y.; Deng, J.; Sun, Z. Efficient benzo(a)pyrene degradation by coal gangue-based catalytic material for peroxymonosulfate activation. J. Environ. Manag. 2024, 351, 119645. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, Z.; Song, W.; Zhong, Y.; Sun, M.; Gan, T.; Bao, B. Quantifying gel properties of industrial waste-based geopolymers and their application in Pb2+ and Cu2+ removal. J. Clean. Prod. 2021, 315, 128203. [Google Scholar] [CrossRef]
- Duan, D.; Wang, C.; Bai, D.; Huang, D. Representative coal gangue in China: Physical and chemical properties, heavy metal coupling mechanism and risk assessment. Sustain. Chem. Pharm. 2024, 37, 101402. [Google Scholar] [CrossRef]
- Wu, H.; Wen, Q.; Hu, L.; Gong, M.; Tang, Z. Feasibility study on the application of coal gangue as landfill liner material. Waste Manag. 2017, 63, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Zhang, J.; Li, X.; Hao, B.; Xu, F.; Liu, K. Reuse of coal gangue to prepare adsorbent with multiscale pore structure for emulsified water removal. Inorg. Chem. Commun. 2023, 151, 110632. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, H.; Hu, Y.; Yan, S.; Yang, J. Adsorption removal of cationic dyes from aqueous solutions using ceramic adsorbents prepared from industrial waste coal gangue. J. Environ. Manag. 2019, 234, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yan, X.; Li, L.; Gu, J.; Zhang, T.; Tian, L.; Su, X.; Lin, Z. High-efficiency adsorption of Cr(VI) and RhB by hierarchical porous carbon prepared from coal gangue. Chemosphere 2021, 275, 130008. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Wang, B.; Zhang, X.; Lee, X.; Chen, M.; Feng, Q.; Chen, S. Insights into Cr(VI) removal mechanism in water by facile one-step pyrolysis prepared coal gangue-biochar composite. Chemosphere 2022, 299, 134334. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Zhang, J.; Liu, D.; Meng, X.; Guo, Y.; Cheng, F. Feasible synthesis of magnetic zeolite from red mud and coal gangue: Preparation, transformation and application. Powder Technol. 2023, 423, 118495. [Google Scholar] [CrossRef]
- Abdelwahab, O.; Thabet, W.M. Natural zeolites and zeolite composites for heavy metal removal from contaminated water and their applications in aquaculture Systems: A review. Egypt. J. Aquat. Res. 2023, 49, 431–443. [Google Scholar] [CrossRef]
- Mohammadi, R.; Azadmehr, A.; Maghsoudi, A. Enhanced competitive adsorption of zinc and manganese by alginate-iron oxide-combusted coal gangue composite: Synthesizing, characterization and investigation. J. Environ. Chem. Eng. 2021, 9, 105003. [Google Scholar] [CrossRef]
- Lv, B.; Dong, B.; Zhang, C.; Chen, Z.; Zhao, Z.; Deng, X.; Fang, C. Effective adsorption of methylene blue from aqueous solution by coal gangue-based zeolite granules in a fluidized bed: Fluidization characteristics and continuous adsorption. Powder Technol. 2022, 408, 117764. [Google Scholar] [CrossRef]
- Qiu, R.; Cheng, F.; Huang, H. Removal of Cd2+ from aqueous solution using hydrothermally modified circulating fluidized bed fly ash resulting from coal gangue power plant. J. Clean. Prod. 2018, 172, 1918–1927. [Google Scholar] [CrossRef]
- Zhao, B.-H.; Zhu, Y.-H.; Wang, C. Degradation of humic acid via peroxymonosulfate activation by FeCo2O4 nanoparticles supported on modified coal gangue. Inorg. Chem. Commun. 2023, 152, 110736. [Google Scholar] [CrossRef]
- Li, H.; Zheng, F.; Wang, J.; Zhou, J.; Huang, X.; Chen, L.; Hu, P.; Gao, J.; Zhen, Q.; Bashir, S.; et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance. Chem. Eng. J. 2020, 390, 124513. [Google Scholar] [CrossRef]
- Yang, F.; Lv, J.; Zheng, Y.; Cui, J.; Huang, Y.; Cao, X.; Liu, H.; Zhao, L. Enhancement of coal gangue performance by surface micro-crystalline glaze derived from mineral powder. Sci. Total Environ. 2023, 858, 159986. [Google Scholar] [CrossRef]
- Zhao, G.; Chang, F.; Chen, J.; Si, G. Research and prospect of underground intelligent coal gangue sorting technology: A review. Miner. Eng. 2024, 215, 108818. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Zhou, Q.; Qi, T.; Liu, G.; Peng, Z. Efficient separation of silica and alumina in simulated CFB slag by reduction roasting-alkaline leaching process. Waste Manag. 2019, 87, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.; Geng, H.; Deng, J.; Su, X.; Chen, M.; Park, C.B. Al and other critical metals co-extraction from coal gangue through delamination pretreatment and recycling strategies. Chem. Eng. J. 2023, 477, 147036. [Google Scholar] [CrossRef]
- Li, C.; Zheng, L.; Jiang, C.; Chen, X.; Ding, S. Characteristics of leaching of heavy metals from low-sulfur coal gangue under different conditions. Int. J. Coal Sci. Technol. 2021, 8, 780–789. [Google Scholar] [CrossRef]
- Dong, L.; Li, Y.; Yan, J.; Shu, X.Q. Efficient Extraction of SiO2 and Al2O3 from Coal Gangue by Means of Acidic Leaching. Adv. Mater. Res. 2014, 878, 149–156. [Google Scholar] [CrossRef]
Category | Low Sulfur | Medium Sulfur | Medium High Sulfur | Sulfur High Sulfur |
---|---|---|---|---|
W (Std) | W (Std) ≤ 1% | 1% < W (Std) < 3% | 3% < W (Std) < 6% | W (Std) > 6% |
Serial Number | Element | Content (wt%) |
---|---|---|
1 | O | 47.549 |
2 | Si | 24.686 |
3 | Al | 10.601 |
4 | Ca | 6.06 |
5 | Fe | 3.176 |
6 | S | 2.689 |
7 | K | 2.134 |
8 | Ti | 1.297 |
9 | Na | 0.811 |
10 | Mg | 0.770 |
11 | Mn | 0.075 |
12 | Dy | 0.053 |
13 | P | 0.037 |
14 | Cr | 0.018 |
15 | Sr | 0.016 |
16 | Zr | 0.08 |
17 | Cu | 0.07 |
18 | Rb | 0.07 |
19 | Zn | 0.06 |
Physical Property | Impact of Resource Utilization |
---|---|
Particle size morphology | Different uses for small and large particles |
Density and hardness | Load-bearing capacity when used as a building material |
Porosity | Important factors for use as adsorbent materials or catalysts |
Thermal and electrical conductivity | Important factors for insulation or insulating materials |
Source | Application | Functions | References |
---|---|---|---|
Coal mining and washing processes | Construction materials (e.g., cement, bricks), soil conditioners, energy recovery | Produces building materials through high-temperature sintering, improves soil quality, provides energy | [43,44] |
Coal gangue stockpiles | Soil remediation, environmental pollution control (e.g., heavy metal pollution remediation) | Acts as a soil conditioner, reduces soil pollution, restores ecosystems | [45,46] |
Coal gangue stockpiles | Heavy metal pollution control, ecological restoration, solid waste treatment | Adsorbs heavy metals, promotes plant growth, reduces secondary pollution | [47] |
Coal mining by-products | Energy recovery (combustion, gasification) | Provides energy, reduces reliance on other energy resources | [48] |
Extraction Method | Efficiency | Drawbacks | References |
---|---|---|---|
Acid Leaching | Above 90% (high efficiency) | May cause environmental pollution, difficult waste liquid treatment, and the use of corrosive acidic solutions. | [148,154] |
Alkaline Leaching | 80–90% (relatively high) | Requires large amounts of alkaline solutions, complex treatment process, and the corrosive nature of alkaline solutions. | [155] |
High-Temperature Sintering | 70–80% (lower efficiency) | High energy consumption during heating, lower aluminum recovery efficiency, and high equipment investment. | [156] |
Gasification | 60–70% (lower efficiency) | Requires high temperatures, high equipment investment, and relatively low aluminum recovery efficiency. | [157] |
Catalysts/Adsorbents | Advantage |
---|---|
Carbon supported catalysts | Low cost, high performance |
Ni-based catalysts | Low cost and can be recycled many times |
Copper-modified catalysts | Greatly accelerates catalytic speed |
Copper and silver catalysts | Good stability |
Advantages | Description | References |
---|---|---|
Enhanced Performance | Advanced technologies like nanotechnology and composite materials significantly improve the mechanical properties, durability, and corrosion resistance of coal gangue-based products, broadening their application fields. | [180] |
Multifunctionality | Coal gangue can be functionalized with additional properties such as adsorption, antibacterial, and self-healing capabilities, making it useful for water treatment, environmental remediation, etc. | [166,172] |
Improved Resource Efficiency | Advanced technologies allow for more diversified uses of coal gangue, increasing resource recovery efficiency and reducing reliance on single-use applications. | [181] |
Higher Economic Value | Advanced techniques enable coal gangue to be transformed into high-value products, such as high-performance construction materials and chemical products, increasing economic benefits. | [58,60] |
Higher Resource Recovery | Advanced materials technologies enable the extraction of valuable metals and other useful components from coal gangue, improving resource recovery rates. | [148,149] |
Automation and Smart Processing | Future automated and smart technologies will optimize the processing and utilization of coal gangue, improving efficiency and reducing costs. | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Bai, B.; Yang, X.; Zhu, S.; Tian, J.; Wang, Z.; Xu, L.; Xu, L.; Shen, B. Coal Gangue Utilization: Applications, Challenges, and Sustainable Development Strategies. Energies 2025, 18, 444. https://doi.org/10.3390/en18020444
Sun Y, Bai B, Yang X, Zhu S, Tian J, Wang Z, Xu L, Xu L, Shen B. Coal Gangue Utilization: Applications, Challenges, and Sustainable Development Strategies. Energies. 2025; 18(2):444. https://doi.org/10.3390/en18020444
Chicago/Turabian StyleSun, Yinghui, Bohao Bai, Xu Yang, Shujun Zhu, Jilin Tian, Zhuozhi Wang, Li Xu, Lianfei Xu, and Boxiong Shen. 2025. "Coal Gangue Utilization: Applications, Challenges, and Sustainable Development Strategies" Energies 18, no. 2: 444. https://doi.org/10.3390/en18020444
APA StyleSun, Y., Bai, B., Yang, X., Zhu, S., Tian, J., Wang, Z., Xu, L., Xu, L., & Shen, B. (2025). Coal Gangue Utilization: Applications, Challenges, and Sustainable Development Strategies. Energies, 18(2), 444. https://doi.org/10.3390/en18020444