Estimating a Non-Linear Economic Model for a Small-Scale Pyrolysis Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Modelling of Energy System
2.2. Exergoeconomics of Pyrolysis Unit
2.3. Experimental Set-Up
3. Results
3.1. Dynamics of the Energy System
3.2. Exergy Analysis
3.3. Exergoeconomics of the Energy System
4. Conclusions
- A drastic rise in the pressure was noticed during the dehydration phase of PPN with a corresponding rise in temperature by 50.90%. At the onset of devolatilization, the system pressure rose by 27.80% with a 45% conversion of the PPN during the reaction. The char formation began with a 33.16% fall in pressure and a 5.46% increase in the temperature of the bed. The exergy destruction in a particular component/material stream to the total exergy destruction, the exergy of fuel, and the exergy of the product was noticed to be maximum for PPN, followed by the heating system and the reactor. The maximum exergetic efficiency (ηII) estimated based on the component was maximum for the ancillary pump and heat exchanger, followed by maximum exergy conversion during extraction of pyrolysis oil and scavenging of producer gas from the system.
- The exergy cost model predominately followed the non-linearity in the form of the sigmoidal and wave network functions. The exergy cost associated with charcoal () reported by the proposed model was 20.37 ¢·s−1, an underprediction of the validation data by a margin of 23.38%. Similarly, the exergy cost rate to the pyrolysis oil was overpredicted by a percentage fraction of 13.63%. The overprediction in the change in the relative change in the cost of PPN (I) was 0.86%. Comparatively, the relative cost predicted by the ARX showed a good consensus with the validation for all the material streams. The lowest RMSE (6.32 × 10−6) was appended with the exergy cost model of the gas, whereas the maximum RMSE was seen in the model associated with charcoal production. In the same way, the best-fitted model with the validation data (I) was related to PPN and oil generation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. Bioenergy; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/bioenergy (accessed on 1 May 2024).
- IEA. Bioenergy Power Generation; IEA: Paris, France, 2021; Available online: https://www.iea.org/reports/bioenergy-power-generation (accessed on 1 May 2024).
- IEA. Is the Biofuel Industry Approaching a Feedstock Crunch? IEA: Paris, France, 2022. Available online: https://www.iea.org/reports/is-the-biofuel-industry-approaching-a-feedstock-crunch (accessed on 1 May 2024).
- Kersten, S.R.A.; Wang, X.; Prins, W.; van Swaaij, W.P.M. Biomass Pyrolysis in a Fluidized Bed Reactor. Part 1: Literature Review and Model Simulations. Ind. Eng. Chem. Res. 2005, 44, 8773–8785. [Google Scholar] [CrossRef]
- Di Blasi, C. A Transient, Two-Dimensional Model of Biomass Pyrolysis. Dev. Thermochem. Biomass Convers. 1997, 2, 147–160. [Google Scholar] [CrossRef]
- Bamford, C.H.; Crank, J.; Malan, D.H. The combustion of wood. Part I. Math. Proc. Camb. Philos. Soc. 1946, 42, 166–182. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Lak Kamari, M.; Maleki, A.; Daneshpour, R.; Rosen, M.A.; Pourfayaz, F.; Alhuyi Nazari, M. Exergy, energy and environmental evaluation of a biomass-assisted integrated plant for multigeneration fed by various biomass sources. Energy 2023, 263, 125649. [Google Scholar] [CrossRef]
- Shan, S.; Huang, H.; Chen, B.; Wu, H.; Zhou, Z. Performance analysis of biomass driven thermophotovoltaic system from energy and exergy perspectives. Therm. Sci. Eng. Prog. 2022, 33, 101351. [Google Scholar] [CrossRef]
- Fakayode, O.A.; Wang, Z.; Wahia, H.; Mustapha, A.T.; Zhou, C.; Ma, H. Higher heating value, exergy, pyrolysis kinetics and thermodynamic analysis of ultrasound-assisted deep eutectic solvent pretreated watermelon rind biomass. Bioresour. Technol. 2021, 332, 125040. [Google Scholar] [CrossRef]
- Sezer, S.; Özveren, U. Investigation of syngas exergy value and hydrogen concentration in syngas from biomass gasification in a bubbling fluidized bed gasifier by using machine learning. Int. J. Hydrogen Energy 2021, 46, 20377–20396. [Google Scholar] [CrossRef]
- Tosun, D.C.; Açıkkalp, E.; Caglar, B.; Altuntas, O.; Hepbasli, A. Proposal of novel exergy-based sustainability indices and case study for a biomass gasification combine cycle integrated with liquid metal magnetohydrodynamics. Process Saf. Environ. Prot. 2023, 174, 328–339. [Google Scholar] [CrossRef]
- He, F.; Liu, X.; Wang, M.; Zhou, S.; Heydarian, D. Energy, exergy, exergoeconomic, and environmental analyses and multi-objective optimization of a biomass-to-energy integrated thermal power plant. Alex. Eng. J. 2022, 61, 5629–5648. [Google Scholar] [CrossRef]
- Yoder, J.; Galinato, S.; Granatstein, D.; Garcia-Pérez, M. The economic tradeoff between biochar and bio-oil production via pyrolysis. Biomass Bioenergy 2011, 35, 1851–1862. [Google Scholar] [CrossRef]
- Gill, M.; Kurian, V.; Kumar, A.; Stenzel, F.; Hornung, A.; Gupta, R. Thermo-catalytic reforming of alberta-based biomass feedstock to produce biofuels. Biomass Bioenergy 2021, 152, 106203. [Google Scholar] [CrossRef]
- Wang, X.; Kersten, S.R.A.; Prins, W.; van Swaaij, W.P.M. Biomass Pyrolysis in a Fluidized Bed Reactor. Part 2: Experimental Validation of Model Results. Ind. Eng. Chem. Res. 2005, 44, 8786–8795. [Google Scholar] [CrossRef]
- Amutio, M.; Lopez, G.; Artetxe, M.; Elordi, G.; Olazar, M.; Bilbao, J. Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resour. Conserv. Recycl. 2012, 59, 23–31. [Google Scholar] [CrossRef]
- Thoharudin Hsiau, S.-S.; Chen, Y.-S.; Yang, S. Design optimization of fluidized bed pyrolysis for energy and exergy analysis using a simplified comprehensive multistep kinetic model. Energy 2023, 276, 127615. [Google Scholar] [CrossRef]
- Dhaundiyal, A. Thermo-Statistical Investigation of the Solar Air Collector Using Least Angle Regression. Energies 2023, 16, 2461. [Google Scholar] [CrossRef]
- Dhaundiyal, A. Exergy Analysis of a Passive Thermal System Using Hammerstein–Wiener Estimation. J. Energy Resour. Technol. 2023, 145, 121301. [Google Scholar] [CrossRef]
- Dhaundiyal, A.; Bercesi, G.; Toth, L. Investigation of a vertical closed-loop geothermal system for heating an educational building. Energy Sci. Eng. 2022, 11, 482–501. [Google Scholar] [CrossRef]
- Chen, T.; Ku, X.; Lin, J.; Ström, H. CFD-DEM Simulation of Biomass Pyrolysis in Fluidized-Bed Reactor with a Multistep Kinetic Scheme. Energies 2020, 13, 5358. [Google Scholar] [CrossRef]
- Wang, X.; Lv, W.; Guo, L.; Zhai, M.; Dong, P.; Qi, G. Energy and exergy analysis of rice husk high-temperature pyrolysis. Int. J. Hydrogen Energy 2016, 41, 21121–21130. [Google Scholar] [CrossRef]
- Nayak, P.P.; Datta, A.K. An entropy-based TOPSIS approach for selecting the best suitable rice husk for potential energy applications: Pyrolysis kinetics and characterization of rice husk and rice husk ash. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Venugopal, D.; Thangavelu, L.; Elumalai, N. Energy, exergy and sustainability analysis of rice husk air gasification process. Therm. Sci. 2018, 23, 549–560. [Google Scholar] [CrossRef]
- Zalazar-Garcia, D.; Fernandez, A.; Cavaliere, L.; Deng, Y.; Soria, J.; Rodriguez, R.; Mazza, G. Slow pyrolysis of pistachio-waste pellets: Combined phenomenological modeling with environmental, exergetic, and energetic analysis (3-E). Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Peters, J.F.; Petrakopoulou, F.; Dufour, J. Exergetic analysis of a fast pyrolysis process for bio-oil production. Fuel Process. Technol. 2014, 119, 245–255. [Google Scholar] [CrossRef]
- Tiara, E.S.; Susanto Ginting, A.; Setiawan, R.P.; Joelianingsih; Tambunan, A.H. Exergy Analysis on Pyrolysis Process of Oil Palm Empty Fruit Bunch. IOP Conf. Ser. Mater. Sci. Eng. 2019, 557, 012058. [Google Scholar] [CrossRef]
- Wang, K.; Sun, R.F.; Zhang, G.P. Energy Efficiency Assessment and Exergy Analysis for Lignite Pyrolysis Process System. Adv. Mater. Res. 2014, 953–954, 1184–1188. [Google Scholar] [CrossRef]
- Tsatsaronis, G. Thermoeconomic analysis and optimization of energy systems. Prog. Energy Combust. Sci. 1993, 19, 227–257. [Google Scholar] [CrossRef]
- Dhaundiyal, A.; Toth, L. Developing a thermodynamic model for the circulating air using an opaque system. Energy Sci. Eng. 2023, 11, 3790–3806. [Google Scholar] [CrossRef]
- Bejan, A.; Tsatsaronis, G.; Moran, M. Thermal Design and Optimization; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Kotas, T.J. The Exergy Method of Thermal Plant Analysis; Paragon Publishing: Trowbridge, UK, 1985. [Google Scholar] [CrossRef]
- Tsatsaronis, G. Energy economics and management in industry. In Proceedings of the European Conference I, Algarve, Portugal, 1 August 1984; p. 151. [Google Scholar]
- Gaggioli, R.A. (Ed.) Efficiency and Costing; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1983. [Google Scholar] [CrossRef]
- Dhaundiyal, A.; Tewari, P.C. Performance evaluation of throatless gasifier using pine needles as a feedstock for power generation. Acta Technol. Agric. 2016, 19, 10–18. [Google Scholar] [CrossRef]
- Dhaundiyal, A.; Atsu, D.; Toth, L. Physico-chemical assessment of torrefied Eurasian pinecones. Biotechnol. Biofuels 2020, 13, 199. [Google Scholar] [CrossRef]
Material Type | C% | H% | N% | O% | S% | Bulk Density (kg∙m−3) | Heating Value (MJ∙kg−1) |
---|---|---|---|---|---|---|---|
PPN | 53.40 | 6.54 | 0.39 | 36.79 | 0.10 | 730.00 | 23.44 |
Char (PPN) | 72.65 | 3.48 | 1.57 | 14.17 | 0.26 | - | 27 |
Components | Manufacturer | Measuring Range/Capacity/Accuracy |
---|---|---|
Gas meter | Ganz 2000, Budapest, Hungary | 0.04 m3/h, 0.49 bar |
Multifunction analyzer | EMD 90, Contrel Electtronica, Lombardy, Italy | Power < 1% Current < 0.5% Voltage < 0.5% Power factor < 1% Measuring range: 30–500 Hz |
VY Strain gauge | HBM, Darmstadt, Germany | Nominal resistance: 120–350 Ω |
Quantum X data acquisition system (DAQ) | HBM, Darmstadt, Germany | Sampling rate: 250 kHz |
Pressure gauge | Huba control AG, Würenlos, Germany | Pressure < 0.5% Measuring range: 0.3–50 mbar |
Gas analyzer | VISIT-03H analyzer, Messtechnik EHEIM Gmbh, Schwaigern, Germany | Gas volumetric rate: 0.8 L/min Maximum Permissible pressure: 50 mbar |
Material | Tbb (K) | Tbt (K) | Pd (Pa) | Tgt (K) | Tgo (K) | P (W) | Tw (K) | m (g) |
---|---|---|---|---|---|---|---|---|
PPN | ±0.24 | ±0.18 | ±2.94 | ±0.062 | ±0.064 | ±1.55 | ±0.06 | ±0.15 g |
Component/Material Stream | ψPH | ψCH | εD | εL | y1 | y2 | y3 | |
---|---|---|---|---|---|---|---|---|
Heater | 1.61 MJ∙kg−1 | 00 | 13.04% | 0.63 MJ∙kg−1 | 0.77 MJ∙kg−1 | 0.06 | 5.74 × 10−3 | 0.01 |
Reactor | 0.55 MJ∙kg−1 | 00 | 49.10% | 0.21 MJ∙kg−1 | 0.07 MJ∙kg−1 | 0.02 | 1.91 × 10−3 | 4.11 × 10−03 |
Heat exchanger | 65.80 kJ∙kg−1 | 00 | 78.08% | 7.11 kJ∙kg−1 | 7.31 kJ∙kg−1 | 6.86 ×10−4 | 6.47 × 10−5 | 1.39 × 10−4 |
Pump | 58.99 kJ∙kg−1 | 00 | 87.81% | 6.12 kJ∙kg−1 | 1.07 kJ∙kg−1 | 5.91 ×10−4 | 5.57 × 10−5 | 1.20 × 10−4 |
PPN | 81.38 MJ∙kg−1 | 28.37 MJ∙kg−1 | 46.46% | 8.39 MJ∙kg−1 | 50.37 MJ∙kg−1 | 0.88 | 0.08 | 0.16 |
Gas | 0.21 MJ∙kg−1 | 0.15 MJ∙kg−1 | 71.90% | 50.70 kJ∙kg−1 | 8.29 kJ∙kg−1 | 4.76 × 10−3 | 4.61 × 10−4 | 9.94 × 10−4 |
Charcoal | 0.68 MJ∙kg−1 | 33.21 MJ∙kg−1 | 65% | 150.91 kJ∙kg−1 | 87.05 kJ∙kg−1 | 0.01 | 1.37 × 10−3 | 2.95 × 10−3 |
Oil | 0.23 MJ∙kg−1 | 16.51 MJ∙kg−1 | 72.73% | 93.42 kJ∙kg−1 | 15.28 kJ∙kg−1 | 8.78 × 10−3 | 8.51 × 10−4 | 1.83 × 10−3 |
Total | 84.78 MJ∙kg−1 | 79.61 MJ∙kg−1 | - | 9.53 MJ∙kg−1 | 51.32 MJ∙kg−1 | - | - | - |
Component/Material Stream | |||||
---|---|---|---|---|---|
PPN | 0.027 ¢·s−1 | 0.24 ¢·s−1 | 8.60 × 10−3 ¢·s−1 | 0.22 | 1.15 |
Gas | 0.0017 ¢·s−1 | 0.04 ¢·s−1 | 8.70 × 10−5 ¢·s−1 | 0.95 | 0.39 |
Charcoal | 26.51 ¢·s−1 | 35.22 ¢·s−1 | 0.06 ¢·s−1 | 0.99 | 0.53 |
Oil | 0.022 ¢·s−1 | 8.68 ¢·s−1 | 0.01 ¢·s−1 | 0.99 | 0.37 |
Heater | 5.01 ¢·s−1 | 13.79 ¢·s−1 | 4.70 ¢·s−1 | 0.01 | 6.67 |
Component/Material stream | RMSE | I | RMSE | |||||
---|---|---|---|---|---|---|---|---|
Validation Data | Predicted Model | Non-Linearity | Validation Data | Predicted Model | Non-Linearity | |||
PPN | 0.027 ¢·s−1 | 0.025 ¢·s−1 | Sigmoidnet | 8.07 × 10−5 | 1.15 | 1.16 | Sigmoidnet | ±3.87 × 10−4 |
Gas | 0.0017 ¢·s−1 | 0.0016 ¢·s−1 | Sigmoidnet | ±6.32 × 10−6 | 0.39 | 0.37 | Sigmoidnet | ±0.01 |
Charcoal | 26.51 ¢·s−1 | 20.37 ¢·s−1 | Wavenet | ±0.26 | 0.53 | 0.52 | Wavenet | ±5.80 × 10−2 |
Oil | 0.022 ¢·s−1 | 0.025 ¢·s−1 | Wavenet | ±2.63 × 10−4 | 0.37 | 0.37 | Wavenet | ±4 × 10−3 |
Heater | 5.01 ¢·s−1 | 5.02 ¢·s−1 | Wavenet | ±3.87 × 10−4 | 6.67 | 6.64 | Sigmoidnet | ±0.06 |
Material Stream | Regressors I | Akaike’s Final Prediction Error | Akaike’s Final Prediction Error | |||||
---|---|---|---|---|---|---|---|---|
k | l | m | k | l | m | I | ||
PPN | 3 | 3 | 4 | 2 | 2 | 3 | 6.63 × 10−12 | 1.17 × 10−17 |
Gas | 2 | 2 | 2 | 2 | 2 | 4 | 6.02 × 10−13 | 6.04 × 10−16 |
Charcoal | 2 | 2 | 4 | 2 | 2 | 4 | 1.45 × 10−09 | 8.37 × 10−20 |
Oil | 2 | 2 | 4 | 6 | 5 | 4 | 2.68 × 10−14 | 5.98 × 10−16 |
Heater | 2 | 2 | 1 | 2 | 3 | 3 | 1.56 × 10−7 | 3.46 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhaundiyal, A.; Betovics, A.M.; Toth, L. Estimating a Non-Linear Economic Model for a Small-Scale Pyrolysis Unit. Energies 2025, 18, 445. https://doi.org/10.3390/en18020445
Dhaundiyal A, Betovics AM, Toth L. Estimating a Non-Linear Economic Model for a Small-Scale Pyrolysis Unit. Energies. 2025; 18(2):445. https://doi.org/10.3390/en18020445
Chicago/Turabian StyleDhaundiyal, Alok, András Máté Betovics, and Laszlo Toth. 2025. "Estimating a Non-Linear Economic Model for a Small-Scale Pyrolysis Unit" Energies 18, no. 2: 445. https://doi.org/10.3390/en18020445
APA StyleDhaundiyal, A., Betovics, A. M., & Toth, L. (2025). Estimating a Non-Linear Economic Model for a Small-Scale Pyrolysis Unit. Energies, 18(2), 445. https://doi.org/10.3390/en18020445