Thermoelectric Properties of Flexible PEDOT:PSS/Polypyrrole/Paper Nanocomposite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Flexible PEDOT:PSS/PPy/Paper Composite Films
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bubnova, O.; Crispin, X. Towards polymer-based organic thermoelectric generators. Energy Environ. Sci. 2012, 5, 9345–9362. [Google Scholar] [CrossRef]
- Hsu, C.T.; Huang, G.Y.; Chu, H.S.; Yu, B.; Yao, D.T. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators. Appl. Energy 2011, 88, 1291–1297. [Google Scholar] [CrossRef]
- He, M.; Qin, F.; Lin, Z.Q. Towards high-performance polymer-based thermoelectric materials. Energy Environ. Sci. 2013, 6, 1352–1361. [Google Scholar] [CrossRef]
- Yan, H.; Sada, N.; Toshima, N. Thermal transporting properties of electrically conductive polyaniline films as organic thermoelectric materials. J. Therm. Anal. Calorim. 2002, 69, 881–887. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.M.; Tang, X.F. Synthesis and thermoelectric properties of polyaniline. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2003, 18, 53–55. [Google Scholar]
- Kemp, N.T.; Kaiser, A.B.; Liu, C.J.; Chapman, B.; Mercier, O.; Carr, A.M.; Trodahl, H.J.; Buckley, R.G.; Partridge, A.C.; Lee, J.Y.; et al. Thermoelectric power and conductivity of different types of polypyrrole. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 953–960. [Google Scholar] [CrossRef]
- Wu, J.S.; Sun, Y.M.; Pei, W.B.; Huang, L.; Xu, W.; Zhang, Q.C. Polypyrrole nanotube film for flexible thermoelectric application. Synth. Met. 2014, 196, 173–177. [Google Scholar] [CrossRef]
- Xu, Q.; Li, M.X.; Yan, P.; Wei, C.Z.; Fang, L.L.; Wei, W.; Bao, H.F.; Xu, J.; Xu, W.L. Polypyrrole-coated cotton fabrics prepared by electrochemical polymerization as textile counter electrode for dye-sensitized solar cells. Org. Electron. 2016, 29, 107–113. [Google Scholar] [CrossRef]
- Percec, S.; Bolas, C.; Howe, L.; Brill, D.J.; Li, J. In situ polymerization and morphology of polypyrrole obtained in water-soluble polymer templates. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 4966–4976. [Google Scholar] [CrossRef]
- Wang, J.; Cai, K.F.; Shen, S.; Yin, J.L. Preparation and thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites. Synth. Met. 2014, 195, 132–136. [Google Scholar] [CrossRef]
- Song, H.J.; Cai, K.F.; Wang, J.; Shen, S. Influence of polymerization method on the thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites. Synth. Met. 2016, 211, 58–65. [Google Scholar] [CrossRef]
- Lei, J.Y.; Lu, Z.C.; Wang, W.; Bian, X.J.; Zhang, T.; Xue, Y.P.; Wang, C. Controllable fabrication of porous free-standing polypyrrole films via a gas phase polymerization. J. Colloid Interface Sci. 2011, 364, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.P.; Park, Y.W.; Choi, Y.S. Metallic electrical transport of pf6-doped polypyrrole: Dc conductivity and thermoelectric power. Synth. Met. 1997, 84, 841–842. [Google Scholar] [CrossRef]
- Yuan, L.Y.; Yao, B.; Hu, B.; Huo, K.F.; Chen, W.; Zhou, J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ. Sci. 2013, 6, 470–476. [Google Scholar] [CrossRef]
- Lee, C.P.; Lai, K.Y.; Lin, C.A.; Li, C.T.; Ho, K.C.; Wu, C.I.; Lau, S.P.; He, J.H. A paper-based electrode using a graphene dot/PEDOT:PSS composite for flexible solar cells. Nano Energy 2017, 36, 260–267. [Google Scholar] [CrossRef]
- Andersson, P.; Nilsson, D.; Svensson, P.O.; Chen, M.X.; Malmström, A.; Remonen, T.; Kugler, T.; Berggren, M. Active matrix displays based on all-organic electricochemical smart pixels printed on paper. Adv Mater. 2002, 14, 1460–1464. [Google Scholar] [CrossRef]
- Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, 23, 3751–3769. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.L.; Liu, C.C.; Xu, J.K.; Lu, B.Y.; Song, H.J.; Shi, H.; Yao, Y.Y.; Zhang, L. Paper: An effective substrate for the enhancement of thermoelectric properties in PEDOT:PSS. J. Polym. Sci. Part A Polym. Phys. 2014, 52, 737–742. [Google Scholar] [CrossRef]
- Wei, Q.S.; Mukaida, M.; Kirihara, K.; Naitoh, Y.; Ishida, T. Polymer thermoelectric modules screen-printed on paper. RSC Adv. 2014, 4, 28802–28806. [Google Scholar] [CrossRef]
- Li, J.; Qian, X.R.; Chen, J.H.; Ding, C.Y.; An, X.H. Conductivity decay of cellulose-polypyrrole conductive paper composite prepared by in situ polymerization method. Carbohydr. Polym. 2010, 82, 504–509. [Google Scholar] [CrossRef]
- Kim, G.H.; Shao, L.; Zhang, K.; Pipe, K.P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 2013, 12, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Bubnova, O.; Khan, Z.U.; Matil, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 2011, 10, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Cai, K.F.; Chen, S.; Wang, H.X.; Shen, S.Z.; Donelson, R.; Lin, T. Thermoelectric fabrics: Toward power generating clothing. Sci. Rep. 2015, 5, 6411. [Google Scholar] [CrossRef] [PubMed]
- See, K.C.; Feser, J.P.; Chen, C.E.; Majumdar, A.; Urban, J.J.; Segalman, R.A. Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Lett. 2010, 10, 4664–4667. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.F.; Liu, C.C.; Song, H.J.; Xu, J.K.; Huang, Y.; Zhu, H.F.; Wang, J.M. Effect of solution PH value on thermoelectric performance of free-standing PEDOT:PSS films. Synth. Met. 2013, 31, 185–186. [Google Scholar] [CrossRef]
- Bae, E.J.; Kang, Y.H.; Jang, K.S.; Cho, S.Y. Enhancement of thermoelectric properties of PEDOT:PSS and tellurium-PEDOT:PSS hybrid composites by simple chemical treatment. Sci. Rep. 2016, 6, 8805. [Google Scholar] [CrossRef]
- Cowen, L.M.; Atoyo, J.; Carnie, M.J.; Baran, D.; Schroeder, B.C. Review—Organic materials for thermoelectric energy generation. ECS J. Solid State Sci. Technol. 2017, 6, 3080–3088. [Google Scholar] [CrossRef]
- Mengistie, D.A.; Chen, C.H.; Boopathi, K.M.; Pranoto, F.W.; Li, L.J.; Chu, C.W. Enhanced thermoelectric performance of PEDOT:PSS flexible bulky papers by treatment with secondary dopants. ACS Appl. Mater. Interfaces 2015, 7, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Shen, S.Z.; Cai, K.F.; Casey, P.S. Research progress on polymer-inorganic thermoelectric nanocomposite materials. Prog. Polym. Sci. 2012, 37, 820–841. [Google Scholar] [CrossRef]
- Lay, M.; Pelach, M.A.; Pellicer, N.; Tarres, J.A.; Bun, K.N.; Vilaseca, F. Smart nanopaper based on cellulose nanofibers with hybrid PEDOT:PSS/polypyrrole for energy storage devices. Carbohydr. Polym. 2017, 165, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Cai, K.F.; Chen, S.; Cizek, P.; Lin, T. Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films. ACS Appl. Mater. Interfaces 2014, 6, 5735–5743. [Google Scholar] [CrossRef] [PubMed]
- Coates, N.E.; Yee, S.K.; McCulloch, B.; See, K.C.; Majumdar, A.; Segalman, R.A.; Urban, J.J. Effect of interfacial properties on polymer–Nanocrystal thermoelectric transport. Adv. Mater. 2013, 25, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhou, M.; Zhu, L.; Li, Q.F.; Jiang, C. Enhanced polymer solar cells efficiency by surface coating of the PEDOT:PSS with polar solvent. Sol. Energy 2016, 129, 175–183. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Du, Y.; Jia, R.; Xu, J.; Shen, S.Z. Thermoelectric Properties of Flexible PEDOT:PSS/Polypyrrole/Paper Nanocomposite Films. Materials 2017, 10, 780. https://doi.org/10.3390/ma10070780
Li J, Du Y, Jia R, Xu J, Shen SZ. Thermoelectric Properties of Flexible PEDOT:PSS/Polypyrrole/Paper Nanocomposite Films. Materials. 2017; 10(7):780. https://doi.org/10.3390/ma10070780
Chicago/Turabian StyleLi, Jun, Yong Du, Runping Jia, Jiayue Xu, and Shirley Z. Shen. 2017. "Thermoelectric Properties of Flexible PEDOT:PSS/Polypyrrole/Paper Nanocomposite Films" Materials 10, no. 7: 780. https://doi.org/10.3390/ma10070780
APA StyleLi, J., Du, Y., Jia, R., Xu, J., & Shen, S. Z. (2017). Thermoelectric Properties of Flexible PEDOT:PSS/Polypyrrole/Paper Nanocomposite Films. Materials, 10(7), 780. https://doi.org/10.3390/ma10070780