Microwave-Assisted Synthesis of Goethite Nanoparticles Used for Removal of Cr(VI) from Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Goethite Nanoparticles
2.3. Characterization of the Sample
2.4. Cr(VI) Removal Study
3. Results and Discussion
3.1. Chemical and Physical Properties of Nanoparticles
3.2. Cr(VI) Removal Feasibility
3.2.1. The Effect of Solution pH
3.2.2. Effect of the Contact Time on the Cr(VI) Removal
3.2.3. Adsorption Isotherm
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mineno, T.; Okazaki, M. Adsorption of Cr(VI) ion on synthetic hydrated oxides of iron. Soil Sci. Plant Nutr. 2004, 50, 1043–1046. [Google Scholar] [CrossRef]
- Costa, M. Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Crit. Rev. Toxicol. 1997, 27, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Costa, M. Potential hazards of hexavalent chromate in our drinking water. Toxicol. Appl. Pharmacol. 2003, 188, 1–5. [Google Scholar] [CrossRef]
- Mishra, B. Adsorption of Hexavalent Chromium onto Goethite; National Institute of Technology Rourkela: Rourkela, India, 2012. [Google Scholar]
- Swedlund, P.J.; Webster, J.G.; Miskelly, G.M. Goethite adsorption of Cu(II), Pb(II), Cd(II), and Zn(II) in the presence of sulfate: Properties of the ternary complex. Geochim. Cosmochim. Acta 2009, 73, 1548–1562. [Google Scholar] [CrossRef]
- Weerasooriya, R.; Tobschall, H.J. Mechanistic modeling of chromate adsorption onto goethite. Colloids Surf. A 2000, 162, 167–175. [Google Scholar] [CrossRef]
- Sriratana, S.; Scamehorn, J.F.; Chavadej, S.; Saiwan, C.; Haller, K.J.; Christian, S.D.; Tucker, E.E. Use of poly electrolyte-enhanced ultra filtration to remove chromate from water. Sep. Sci. Technol. 1996, 31, 2493–2504. [Google Scholar] [CrossRef]
- Christian, S.D.; Bhat, S.N.; Tucker, E.E.; Scamehorn, J.F.; El-Sayed, D.A. Micellar-enhanced ultrafiltration of chromate anion from aqueous streams. AIChE J. 1988, 34, 189–194. [Google Scholar] [CrossRef]
- Rengaraj, S.; Yeon, K.-H.; Moon, S.-H. Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 2001, 87, 273–287. [Google Scholar] [CrossRef]
- Owlad, M.; Aroua, M.K.; Daud, W.A.W.; Baroutian, S. Removal of hexavalent chromium-contaminated water and wastewater: A review. Water Air Soil Pollut. 2009, 200, 59–77. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Yanful, E.K. Arsenic and chromium removal by mixed magnetite–maghemite nanoparticles and the effect of phosphate on removal. J. Environ. Manag. 2010, 91, 2238–2247. [Google Scholar] [CrossRef] [PubMed]
- Cundy, A.B.; Hopkinson, L.; Whitby, R.L.D. Use of iron-based technologies in contaminated land and groundwater remediation: A review. Sci. Total Environ. 2008, 400, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Balistrieri, L.S.; Murray, J.W. The adsorption of Cu, Pb, Zn, and Cd on goethite from major ion seawater. Geochim. Cosmochim. Acta 1982, 46, 1253–1265. [Google Scholar] [CrossRef]
- Aredes, S.; Klein, B.; Pawlik, M. The removal of arsenic from water using natural iron oxide minerals. J. Clean. Prod. 2012, 29–30, 208–213. [Google Scholar] [CrossRef]
- Kozin, P.A. Charge Development at Iron Oxyhydroxide Surfaces; Umeå University, Service Center KBC: Umeå, Sweden, 2014. [Google Scholar]
- Villalobos, M.; Trotz, M.A.; Leckie, J.O. Surface complexation modeling of carbonate effects on the adsorption of Cr(VI), Pb(II), and U(VI) on goethite. Environ. Sci. Technol. 2001, 35, 3849–3856. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Samad, H.; Watson, P.R. An XPS study of the adsorption of chromate on goethite. Appl. Surf. Sci. 1997, 108, 371–377. [Google Scholar] [CrossRef]
- Gilbert, F.; Refait, P.; Lévêque, F.; Remazeilles, C.; Conforto, E. Synthesis of goethite from Fe(OH)2 precipitates: Influence of Fe(II) concentration and stirring speed. J. Phys. Chem. Solids 2008, 69, 2124–2130. [Google Scholar] [CrossRef]
- Jaiswal, A.; Banerjee, S.; Mani, R.; Chattopadhyaya, M.C. Synthesis, characterization and application of goethite mineral as an adsorbent. J. Environ. Chem. Eng. 2013, 1, 281–289. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; John Wiley & Sons: Weinheim, Germany, 2003. [Google Scholar]
- Marinho, J.Z.; Montes, R.H.O.; de Moura, A.P.; Longo, E.; Varela, J.A.; Munoz, R.A.A.; Lima, R.C. Rapid preparation of α-FeOOH and α-Fe2O3 nanostructures by microwave heating and their application in electrochemical sensors. Mater. Res. Bull. 2014, 49, 572–576. [Google Scholar] [CrossRef]
- Mohapatra, M.; Anand, S. Synthesis and applications of nano-structured iron oxides/hydroxides—A review. Int. J. Eng. Sci. Technol. 2010, 2, 127–146. [Google Scholar] [CrossRef]
- Thies-Weesie, D.M.E.; Hoog, J.P.D.; Mendiola, M.H.H.; Petukhov, A.V.; Vroege, G.J. Synthesis of goethite as a model colloid for mineral liquid crystals. Chem. Mater. 2007, 19, 5538–5546. [Google Scholar] [CrossRef]
- Hu, L.; Percheron, A.; Chaumont, D.; Brachais, C.-H. Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: Magnetite, maghemite and hematite. J. Sol-Gel Sci. Technol. 2011, 60, 198–205. [Google Scholar] [CrossRef]
- Daichuan, D.; Pinjie, H.; Shushan, D. Preparation of uniform α-Fe2O3 particles by microwave-induced hydrolysis of ferric salts. Mater. Res. Bull. 1995, 30, 531–535. [Google Scholar] [CrossRef]
- Gonzalez-Moragas, L.; Yu, S.-M.; Murillo-Cremaes, N.; Laromaine, A.; Roig, A. Scale-up synthesis of iron oxide nanoparticles by microwave-assisted thermal decomposition. Chem. Eng. J. 2015, 281, 87–95. [Google Scholar] [CrossRef]
- Sahoo, T.R.; Armandi, M.; Arletti, R.; Piumetti, M.; Bensaid, S.; Manzoli, M.; Panda, S.R.; Bonelli, B. Pure and Fe-doped CeO2 nanoparticles obtained by microwave assisted combustion synthesis: Physico-chemical properties ruling their catalytic activity towards Co oxidation and soot combustion. Appl.Catal. B 2017, 211, 31–45. [Google Scholar] [CrossRef]
- Meng, L.-Y.; Wang, B.; Ma, M.-G.; Lin, K.-L. The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem. 2016, 1–2, 63–83. [Google Scholar] [CrossRef]
- Chen, H.; Lv, K.; Du, Y.; Ye, H.; Du, D. Microwave-assisted rapid synthesis of Fe2O3/ACF hybrid for high efficient as(V) removal. J. Alloys Comp. 2016, 674, 399–405. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H. Over the adsorption in solution. Chem. Phys. 1906, 57, 385–470. [Google Scholar]
- Cabral-Prieto, A.; Reyes-Felipe, A.A.; Siles-Dotor, M.G. Synthesi and characterization of nanophasic goethite. NanoStruct. Mater. 1998, 10, 311–326. [Google Scholar] [CrossRef]
- Richard, F.C.; Bourg, A.C. Aqueous geochemistry of chromium: A review. Water Res. 1991, 25, 807–816. [Google Scholar] [CrossRef]
- Mustafa, S.; Khan, S.; Iqbal Zaman, M. Effect of Ni2+ ion doping on the physical characteristics and chromate adsorption behavior of goethite. Water Res. 2010, 44, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Babel, S.; Kurniawan, T.A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 2004, 54, 951–967. [Google Scholar] [CrossRef] [PubMed]
- Lagergren, S. Zur Theorie der Sogenannten Adsorption Gelöster Stoffe; Kungliga Svenska Vetenskapsakademiens: Stockholm, Sweeden, 1889; Volume 24, pp. 1–39. [Google Scholar]
- Yuh-Shan, H. Citation review of lagergren kinetic rate equation on adsorption reactions. Scientometrics 2004, 59, 171–177. [Google Scholar] [CrossRef]
Kinetic Model | Parameters | ||
---|---|---|---|
Pseudo-first-order | qe (µmol g−1) | k1 · 10−3 (min−1) | R2 |
46.633 | 8.982 | 0.877 | |
Pseudo-second-order | qe (µmol g−1) | k2 · 10−4 (g µmol−1min−1) | R2 |
41.667 | 3.630 | 0.992 | |
Experimental value | qe(experiment) = 38.328 µmol g−1 |
Model | Parameters | ||
---|---|---|---|
Langmuir | qm (µmol g−1) | KL | R2 |
66.735 | 0.651 | 0.989 | |
Freundlich | N | KF | R2 |
3.076 | 28.782 | 0.927 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.D.; Kynicky, J.; Ambrozova, P.; Adam, V. Microwave-Assisted Synthesis of Goethite Nanoparticles Used for Removal of Cr(VI) from Aqueous Solution. Materials 2017, 10, 783. https://doi.org/10.3390/ma10070783
Nguyen VD, Kynicky J, Ambrozova P, Adam V. Microwave-Assisted Synthesis of Goethite Nanoparticles Used for Removal of Cr(VI) from Aqueous Solution. Materials. 2017; 10(7):783. https://doi.org/10.3390/ma10070783
Chicago/Turabian StyleNguyen, Vinh Dinh, Jindrich Kynicky, Pavlina Ambrozova, and Vojtech Adam. 2017. "Microwave-Assisted Synthesis of Goethite Nanoparticles Used for Removal of Cr(VI) from Aqueous Solution" Materials 10, no. 7: 783. https://doi.org/10.3390/ma10070783
APA StyleNguyen, V. D., Kynicky, J., Ambrozova, P., & Adam, V. (2017). Microwave-Assisted Synthesis of Goethite Nanoparticles Used for Removal of Cr(VI) from Aqueous Solution. Materials, 10(7), 783. https://doi.org/10.3390/ma10070783