Tunable Synthesis of SiC/SiO2 Heterojunctions via Temperature Modulation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology
3.2. Components Analysis
3.3. Microstructure
3.4. Photoluminescence
4.5. Growth Mechanism
4. Conclusions
- (1)
- A mass production of necklace-like SiC/SiO2 heterojunctions was successfully achieved by a molten salt-mediated chemical vapor reaction technique, without a catalyst and a flowing gas. Silicon powder and graphite powder were used as material precursors, and sodium chloride and sodium fluoride were adopted as molten salts.
- (2)
- The as-prepared products synthesized above 1200 °C consisted of fibers and of beans wrapped around the fibers. The fibers were about several millimeters in length, while the diameter of the beans was around several micrometers and tended to decrease as the temperature increased.
- (3)
- The results of the XRD, EDS, FT-IR, and TEM analyses confirmed that the chains were composed of a crystalline SiC core and an amorphous SiO2 shell, and the beans were composed of amorphous SiO2. Meanwhile, the growth direction of SiC cores was perpendicular to the (111) plane.
- (4)
- The bean sizes and thickness of the SiO2 shell in the as-prepared necklace-like SiC/SiO2 heterostructures were tuned by adjusting the reaction temperature, that is, by increasing temperature, the average size of the beans decreased from 4 μm to 1μm, while the thickness of the SiO2 shell increased from 2 nm to 7 nm. The products exhibited a brilliant photoluminescence at 392 nm (3.16 eV), which suggests that they are a promising material for optoelectronic applications.
- (5)
- The growth mechanism leading to the formation of the necklace-like structure involved a molten salt-mediated process, the VS growth mechanism of the SiC/SiO2 core-shell fibers, and the modulation process. Furthermore, Rayleigh instability and surface tension were supposed to be the driving forces for the migration and modulation process of the necklace-like structure.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shen, G.Z.; Bando, Y.; Golberg, D. Self-assembled hierarchical single-crystalline β-SiC nanoarchitectures. Cryst. Growth Des. 2007, 7, 35–38. [Google Scholar] [CrossRef]
- Chen, K.; Fang, M.H.; Huang, Z.H.; Huang, J.T.; Liu, Y.G. Catalytic synthesis and growth mechanism of SiC@SiO2 nanowires and their photoluminescence properties. CrystEngComm 2013, 15, 9032–9038. [Google Scholar] [CrossRef]
- Wei, G.D.; Qin, W.P.; Zheng, K.Z.; Zhang, D.S.; Sun, J.B.; Lin, J.J.; Kim, R.; Wang, G.F.; Zhu, P.P.; Wang, L.L. Synthesis and properties of SiC/SiO2 nanochain heterojunctions by microwave method. Cryst. Growth Des. 2009, 9, 1431–1435. [Google Scholar] [CrossRef]
- Li, Z.; Shi, T.J.; Tan, D.X. Long β-Silicon Carbide Necklace-Like Whiskers Prepared by Carbothermal Reduction of Wood Flour/Silica/Phenolic Composite. J. Am. Ceram. Soc. 2010, 93, 3499–3503. [Google Scholar] [CrossRef]
- Song, G.Y.; Li, Z.J.; Sun, S.S.; Meng, A.; Ma, F.L. A Novel and Simple Method for the Synthesis of β-SiC/SiO2 Coaxial Nanocables in a Large Area: PolycarbosilanePyrolysis. J. Nanosci. Nanotechnol. 2016, 16, 2861–2865. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, Z.J.; Zhao, J.; Yu, H.Y.; Meng, A.; Li, Q.D. Temperature-controlled synthesis, thermodynamics and field emission properties of β-SiC/SiO2 coaxial heterojunction emitters. RSC Adv. 2016, 6, 56489–56494. [Google Scholar] [CrossRef]
- Wang, C.S.; Zhang, J.L.; Meng, A.L.; Zhang, M.; Li, Z.J. Large-scale synthesis of β-SiC/SiOx coaxial nanocables by chemical vapor reaction approach. Phys. E 2007, 39, 128–132. [Google Scholar] [CrossRef]
- Li, C.Y.; Ouyang, H.B.; Huang, J.F.; Zeng, X.R.; Cao, L.Y.; Fei, J.; Xiong, X.B. Synthesis and visible-light photocatalytic activity of SiC/SiO2 nanochain heterojunctions. Mater. Lett. 2014, 122, 125–128. [Google Scholar]
- Liu, H.T.; Huang, Z.H.; Huang, J.T.; Fang, M.H.; Liu, Y.G.; Wu, X.W. Thermal evaporation synthesis of SiC/SiOx nanochain heterojunctions and their photoluminescence properties. J. Mater. Chem. C 2014, 2, 7761–7767. [Google Scholar] [CrossRef]
- Wei, G.D.; Qin, W.P.; Han, W.; Yang, W.Y.; Gao, F.M.; Jing, G.Z.; Kim, R.; Zhang, D.S.; Zheng, K.Z.; Wang, L.L.; et al. Large-scale synthesis of wide band gap semiconductor nanostructures by microwave method. J. Phys. Chem. C. 2009, 113, 19432–19438. [Google Scholar] [CrossRef]
- Li, Y.B.; Xie, S.S.; Zou, X.P.; Tang, D.S.; Liu, Z.Q.; Zhou, W.Y.; Wang, G. Large-scale synthesis of β-SiC nanorods in the arc-discharge. J. Cryst. Growth 2001, 223, 125–128. [Google Scholar] [CrossRef]
- Zhou, W.M.; Yang, B.; Yang, Z.X.; Zhu, F.; Yan, L.J.; Zhang, Y.F. Large-scale synthesis and characterization of SiC nanowires by high-frequency induction heating. Appl. Surf. Sci. 2006, 252, 5143–5148. [Google Scholar] [CrossRef]
- Kim, R.; Qin, W.P.; Wei, G.D.; Wang, G.F.; Wang, L.L.; Zhang, D.S.; Zheng, K.Z.; Liu, N. A simple synthesis of large-scale SiC–SiO2 nanocables by using thermal decomposition of methanol: Structure, FTIR, Raman and PL characterization. J. Cryst. Growth 2009, 311, 4301–4305. [Google Scholar] [CrossRef]
- Hou, H.L.; Wang, L.; Gao, F.M.; Wei, G.D.; Zheng, J.J.; Cheng, X.M.; Tang, B.; Yang, W.Y. Mass production of SiC/SiOx nanochain heterojunctions with high purities. CrystEngComm. 2013, 15, 2986–2991. [Google Scholar] [CrossRef]
- Meng, A.; Li, Z.J.; Zhang, J.J.; Gao, L.; Li, H.J. Synthesis and Raman scattering of β-SiC/SiO2 core-shell nanowires. J. Cryst. Growth 2007, 308, 263–268. [Google Scholar] [CrossRef]
- Liu, W.N.; Chen, J.H.; Chou, K.C.; Hou, X.M. Large scale fabrication of dumbbell-shaped biomimetic SiC/SiO2 fibers. CrystEngComm 2015, 17, 9318–9322. [Google Scholar] [CrossRef]
- Li, W.; Jia, Q.L.; Liu, X.H.; Zhang, J. Large scale synthesis and photoluminescence properties of necklace-like SiC/SiOx heterojunctions via a molten salt mediated vapor reaction technique. Ceram. Int. 2017, 43, 2950–2955. [Google Scholar] [CrossRef]
- Baek, Y.; Ryu, Y.H.; Yong, K. Structural characterization of β-SiC nanowires synthesized by direct heating method. Mater. Sci. Eng. C 2006, 26, 805–808. [Google Scholar] [CrossRef]
- Li, B.S.; Wu, R.B.; Pan, Y.; Wu, L.L.; Yang, G.Y.; Chen, J.J.; Zhu, Q.M. Simultaneous growth of SiC nanowires, SiC nanotubes, and SiC/SiO2 core-shell nanocables. J. Alloy. Compd. 2008, 462, 446–451. [Google Scholar] [CrossRef]
- Han, W.Q.; Fan, S.S.; Li, Q.Q.; Liang, W.J.; Gu, B.L.; Yu, D.P. Continuous synthesis and characterization of silicon carbide nanorods. Chem. Phys. Lett. 1997, 265, 374–378. [Google Scholar] [CrossRef]
- Guo, Y.P.; Zheng, J.C.; Wee, A.T.S.; Huan, C.H.A.; Li, K.; Pan, J.S.; Feng, Z.C.; Chua, S.J. Photoluminescence studies of SiC nanocrystals embedded in a SiO2 matrix. Chem. Phys. Lett. 2001, 339, 319–322. [Google Scholar] [CrossRef]
- Deák, P.; Knaup, J.; Thill, C.; Frauenheim, T.; Hornos, T.; Gali, A. The mechanism of defect creation and passivation at the SiC/SiO2 interface. J. Phys. D Appl. Phys. 2008, 41, 049801. [Google Scholar] [CrossRef]
- Liu, S.L.; Liu, H.T.; Huang, Z.H.; Fang, M.H.; Liu, Y.G.; Wu, X.W. Synthesis of β-SiC nanowires via a facile CVD method and their photoluminescence properties. RSC Adv. 2016, 6, 24267–24272. [Google Scholar] [CrossRef]
- Li, Z.J.; Zhao, J.; Zhang, M.; Xia, J.Y.; Meng, A. SiC nanowires with thickness-controlled SiO2 shells: Fabrication, mechanism, reaction kinetics and photoluminescence properties. Nano Res. 2014, 7, 462–472. [Google Scholar] [CrossRef]
- Nishikawa, H.; Shiroyama, T.; Nakamura, R.; Ohki, Y.; Nagasawa, K.; Hama, Y. Photoluminescence from defect centers in high-purity silica glasses observed under 7.9 eV excitation. Phys. Rev. B 1992, 45, 586–591. [Google Scholar] [CrossRef]
- Wang, F.; Qin, X.F.; Zhu, D.D.; Meng, Y.F.; Yang, L.X.; Sun, L.X.; Ming, Y.F. FeCl2-assisted synthesis and photoluminescence of β-SiC nanowires. Mater. Sci. Semicond. Proc. 2015, 29, 155–160. [Google Scholar] [CrossRef]
- Chen, J.J.; Tang, W.H.; Xin, L.P.; Shi, Q. Band gap characterization and photoluminescence properties of SiC nanowires. Appl. Phys. A Mater. 2011, 102, 213–217. [Google Scholar] [CrossRef]
- Cui, H.; Sun, Y.; Yang, G.Z.; Chen, J.; Jiang, D.; Wang, C.X. Template-and catalyst-free synthesis, growth mechanism and excellent field emission prope; ties of large scale single-crystalline tubular β-SiC. Chem. Commun. 2009, 41, 6243–6245. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Zha, B.L.; Wang, L.Y.; Zhou, K.; Pan, Y. Core-shell SiC/SiO2 heterostructures in nanowires. Phys. Status Solidi A 2012, 209, 553–558. [Google Scholar] [CrossRef]
- Wei, J.; Li, K.Z.; Chen, J.; Yuan, H.D.; He, G.P.; Yang, C.L. Synthesis and Growth Mechanism of SiC/SiO2 Nanochains Heterostructure by Catalyst-Free Chemical Vapor Deposition. J. Am. Ceram. Soc. 2013, 96, 627–633. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Jia, Q.; Yang, D.; Liu, X. Tunable Synthesis of SiC/SiO2 Heterojunctions via Temperature Modulation. Materials 2018, 11, 766. https://doi.org/10.3390/ma11050766
Li W, Jia Q, Yang D, Liu X. Tunable Synthesis of SiC/SiO2 Heterojunctions via Temperature Modulation. Materials. 2018; 11(5):766. https://doi.org/10.3390/ma11050766
Chicago/Turabian StyleLi, Wei, Quanli Jia, Daoyuan Yang, and Xinhong Liu. 2018. "Tunable Synthesis of SiC/SiO2 Heterojunctions via Temperature Modulation" Materials 11, no. 5: 766. https://doi.org/10.3390/ma11050766
APA StyleLi, W., Jia, Q., Yang, D., & Liu, X. (2018). Tunable Synthesis of SiC/SiO2 Heterojunctions via Temperature Modulation. Materials, 11(5), 766. https://doi.org/10.3390/ma11050766