Oxidation Resistance and Wetting Behavior of MgO-C Refractories: Effect of Carbon Content
Abstract
:1. Introduction
2. Experimental
2.1. MgO-C Refractory Preparation
2.2. Testing and Characterization Methods
3. Results and Discussion
3.1 Oxidation Resistance
3.2 Wetting Behavior
4. Conclusions
- The bulk density, apparent porosity, and cold crushing strength of the cured MgO-C refractory decreased as the carbon content increased. These properties degraded after firing, especially at higher carbon content.
- The regenerated MgO in the MgO-C refractory effectively hindered the carbon oxidation in the lower carbon content, and increased the cold crushing strength and bulk density of the fired refractory to some extent.
- The molten slag penetration into the MgO-C refractory, which decreased the apparent volume during the wetting process. The penetration extent was closely related to the contact angle between the MgO-C refractory and the molten slag.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, S.W.; Lee, W.E. Influence of additives on corrosion resistance and corroded microstructures of MgO-C refractories. J. Eur. Ceram. Soc. 2001, 21, 2393–2405. [Google Scholar] [CrossRef]
- Li, Z.; Mukai, K.; Tao, Z. Reactions between MgO-C refractory, molten slag and metal. ISIJ Int. 2000, 40, 101–105. [Google Scholar] [CrossRef]
- Zhu, T.; Li, Y.; Sang, S.; Xie, Z. Mechanical behavior and thermal shock resistance of MgO-C refractories: Influence of graphite content. Ceram. Int. 2017, 43, 7177–7183. [Google Scholar] [CrossRef]
- Liu, Q.C.; Chen, D.F.; Xu, Y.; Newkirk, J.W. Corrosion resistance of MgO-C refractory to smelting reduction slag containing titania. Brit. Corros. J. 2002, 37, 231–234. [Google Scholar] [CrossRef]
- Han, B.; Ke, C.; Wei, Y.; Yan, W.; Wang, C.; Chen, F.; Li, N. Degradation of MgO-C refractories corroded by SiO2-Fe2O3-V2O5-TiO2-MnO-MgO slag. Ceram. Int. 2015, 41, 10966–10973. [Google Scholar] [CrossRef]
- Mukai, K.; Li, Z.; Tao, Z. Bubble generation in MgO-C crucible charged with slag and metal in relation to local corrosion. High Temp. Mater. Process. 2011, 20, 255–262. [Google Scholar] [CrossRef]
- Jansson, S.; Brabie, V.; Jonsson, P. Corrosion mechanism of commercial MgO-C refractories in contact with different gas atmospheres. ISIJ Int. 2008, 48, 760–767. [Google Scholar] [CrossRef]
- Jansson, S.; Brabie, V.; Bohlin, L. Corrosion mechanism and kinetic behaviour of refractory materials in contact with CaO-Al2O3-MgO-SiO2 slags. Scand. J. Metall. 2004, 34, 283–292. [Google Scholar] [CrossRef]
- Zhu, T.; Li, Y.; Sang, S.; Xie, Z. Fracture behavior of low carbon MgO-C refractories using the wedge splitting test. J. Eur. Ceram. Soc. 2017, 37, 1789–1797. [Google Scholar] [CrossRef]
- Sadrnezhaad, S.K.; Mahshid, S.; Hashemi, B.; Nemati, Z.A. Oxidation mechanism of C in MgO-C refractory bricks. J. Am. Ceram. Soc. 2006, 89, 1308–1316. [Google Scholar] [CrossRef]
- Li, X.; Rigaud, M. Anisotropy of the properties of magnesia-graphite refractories: linear thermal change and carbon oxidation resistance. Can. Ceram. Q. 1993, 62, 197–205. [Google Scholar]
- Pilli, V.; Sarkar, R. Nanocarbon containing Al2O3-C continuous casting refractories: effect of graphite content. J. Alloys Compd. 2018, 735, 1730–1736. [Google Scholar] [CrossRef]
- Li, X.; Rigaud, M.; Palco, S. Oxidation kinetics of graphite phase in magnesia-carbon refractories. J. Am. Ceram. Soc. 1995, 78, 965–971. [Google Scholar] [CrossRef]
- Faghihi-Sani, M.A.; Yamaguchi, A. Oxidation kinetics of MgO-C refractory bricks. Ceram. Int. 2002, 28, 835–839. [Google Scholar] [CrossRef]
- Sadrnezhaad, S.K.; Nemati, Z.A.; Mahshid, S.; Hosseini, S.; Hashemi, B. Effect of Al antioxidant on the rate of oxidation of carbon in MgO-C refractory. J. Am. Ceram. Soc. 2007, 90, 509–515. [Google Scholar] [CrossRef]
- Hashemi, B.; Nemati, Z.A.; Faghihi, M.A. Effects of resin and graphite content on density and oxidation behavior of MgO-C refractory bricks. Ceram. Int. 2006, 32, 313–319. [Google Scholar] [CrossRef]
- Yoon, T.; Lee, K.; Lee, B.; Chung, Y. Wetting, spreading and penetration phenomena of slags on MgAl2O4 spinel refractories. ISIJ Int. 2017, 57, 1327–1333. [Google Scholar] [CrossRef]
- Kim, S.; Lee, K.; Chung, Y. Dissolutive wetting and spreading phenomena between Al2O3 substrate and CaO-Al2O3 liquid slags. Metall. Mater. Trans. B 2016, 47, 1209–1216. [Google Scholar] [CrossRef]
- Hemberger, Y.; Berthold, C.; Nickel, K.G. Wetting and corrosion of yttria stabilized zirconia by molten slags. J. Eur. Ceram. Soc. 2012, 32, 2859–2866. [Google Scholar] [CrossRef]
- Heo, S.H.; Lee, K.; Chung, Y. Reactive wetting phenomena of MgO-C refractories in contact with CaO-SiO2 slag. Trans. Nonferrous Met. Soc. China 2012, 22, 870–875. [Google Scholar] [CrossRef]
- Shen, P.; Zhang, L.F.; Wen, Y.; Wang, Y. Wettability and penetration phenomenon between LF refining slag and MgO-C substrate. Iron Steel 2016, 51, 31–40. (in Chinese). [Google Scholar]
- Yuan, Z.; Wu, Y.; Zhao, H.; Matsuura, H.; Tsukihashi, F. Wettability between molten slag and MgO-C refractories for the slag splashing process. ISIJ Int. 2013, 53, 598–602. [Google Scholar] [CrossRef]
- Mukai, K. Wetting and marangoni effect in iron and steelmaking processes. ISIJ Int. 1992, 32, 19–25. [Google Scholar] [CrossRef]
- Mills, K.C.; Hondros, E.D.; Li, Z. Interfacial phenomena in high temperature processes. J. Mater. Sci. 2005, 40, 2403–2409. [Google Scholar] [CrossRef]
- Li, X.; Zhu, B.; Wang, T. Effect of electromagnetic field on slag corrosion resistance of low carbon MgO-C refractories. Ceram. Int. 2012, 38, 2105–2109. [Google Scholar] [CrossRef]
- Leonard, R.J.; Herron, R.H. Significance of oxidation-reduction reactions within BOF refractories. J. Am. Ceram. Soc. 1972, 55, 1–6. [Google Scholar] [CrossRef]
- Ghosh, N.K.; Ghosh, D.N.; Jagannathan, K.P. Oxidation mechanism of MgO-C in air at various temperatures. Brit. Ceram. Trans. 2000, 99, 124–128. [Google Scholar] [CrossRef]
- Tsypkin, G.G.; Calore, C. Role of capillary forces in vapour extraction from low-permeability, water-saturated geothermal reservoirs. Geothermics 2003, 32, 219–237. [Google Scholar] [CrossRef]
Material | 1 | 2 | 3 | 4 |
---|---|---|---|---|
MgO | 97 | 92 | 88 | 84 |
Carbon | 3 | 8 | 12 | 16 |
Al metal powder | +2 | +2 | +2 | +2 |
Liquid resin | +4 | +4 | +4 | +4 |
CaO | SiO2 | Al2O3 | V2O5 | Fe2O3 | MnO | TiO2 |
---|---|---|---|---|---|---|
45.87 | 35.52 | 13.65 | 1.90 | 1.68 | 0.72 | 0.66 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Yu, J.; Yang, X.; Jin, E.; Yuan, L. Oxidation Resistance and Wetting Behavior of MgO-C Refractories: Effect of Carbon Content. Materials 2018, 11, 883. https://doi.org/10.3390/ma11060883
Liu Z, Yu J, Yang X, Jin E, Yuan L. Oxidation Resistance and Wetting Behavior of MgO-C Refractories: Effect of Carbon Content. Materials. 2018; 11(6):883. https://doi.org/10.3390/ma11060883
Chicago/Turabian StyleLiu, Zhaoyang, Jingkun Yu, Xin Yang, Endong Jin, and Lei Yuan. 2018. "Oxidation Resistance and Wetting Behavior of MgO-C Refractories: Effect of Carbon Content" Materials 11, no. 6: 883. https://doi.org/10.3390/ma11060883
APA StyleLiu, Z., Yu, J., Yang, X., Jin, E., & Yuan, L. (2018). Oxidation Resistance and Wetting Behavior of MgO-C Refractories: Effect of Carbon Content. Materials, 11(6), 883. https://doi.org/10.3390/ma11060883