Behavior of Rectangular-Sectional Steel Tubular Columns Filled with High-Strength Steel Fiber Reinforced Concrete Under Axial Compression
Abstract
:1. Introduction
2. Experimental Works
2.1. Preparation of Concrete
2.2. Design and Preparation of Specimens
2.3. Test Method
3. Test Results and Discussions
3.1. Failure Modes
3.2. Axial Load-Deformation Curves
3.3. Energy Dissipation Capacity
4. Prediction of Bearing Capacity and Ductility
4.1. Bearing Capacity
4.2. Ductility Index
5. Conclusions
- (1)
- The addition of steel fibers in core concrete improved the bearing capacity, energy dissipation capacity, and ductility of rectangular-sectional CFST columns under axial compression. The effect of steel fiber was not obvious when the volume fraction of steel fiber was over 0.8%. The concrete strength has a slight impact on the failure modes, but a significant effect on the energy dissipation capacity, bearing capacity and ductility;
- (2)
- Internal longitudinal stiffeners changed the failure modes of rectangular-sectional SFRCFST columns under axial compression. The perfobond ribs increased the ductility and energy dissipation capacity of SFRCFST columns, and worked best with steel tube when the hole spacing is two times the diameter;
- (3)
- Predictive formulas for bearing capacity and ductility index of rectangular-sectional SFRCFST columns are proposed. These give the good predictive results matched with the experimental data;
- (4)
- Rectangular-sectional SFRCFST column stiffened with longitudinal ribs can be used to reduce the cross-sectional dimensions of the structural members such as pier, abutment, pylon, and arch rib. Considering the replacement of reinforcing bars with internal longitudinal stiffeners, steel tube, and steel fibers, the construction cost of SFRCFST columns can be controlled at the same level as the normal concrete members.
Author Contributions
Funding
Conflicts of Interest
References
- Uy, B. Strength of short concrete filled steel box columns incorporating local buckling. J. Struct. Eng. ASCE 2000, 3, 341–352. [Google Scholar] [CrossRef]
- Uy, B. Strength of short concrete filled high-strength steel box columns. J. Constr. Steel Res. 2001, 2, 113–134. [Google Scholar] [CrossRef]
- Aslani, F.; Uy, B.; Wang, Z.W. Confinement models for high strength short square and rectangular concrete-filled steel tubular columns. Steel Compos. Struct. 2016, 5, 937–974. [Google Scholar] [CrossRef]
- Vipulkumar, I.P.; Uy, B.; Prajwal, K.A.; Aslani, F. Confined concrete model of circular, elliptical and octagonal CFST short columns. Steel Compos. Struct. 2016, 3, 497–520. [Google Scholar]
- Elremaily, A.; Azizinamini, A. Behavior and strength of circular concrete-filled tube columns. J. Constr. Steel Res. 2002, 12, 1567–1591. [Google Scholar] [CrossRef]
- Shanmugam, N.E.; Lakshmi, B. State of the art report on steel–concrete composite columns. J. Constr. Steel Res. 2001, 10, 1041–1080. [Google Scholar] [CrossRef]
- Liu, Y.J.; Xiong, Z.H.; Feng, Y.C.; Jiang, L. Concrete-filled rectangular hollow section X joint with Perfobond Leister rib structural performance study: Ultimate and fatigue experimental investigation. Steel Compos. Struct. 2017, 24, 455–465. [Google Scholar]
- Tian, Z.J.; Liu, Y.J.; Jiang, L.; Zhu, W.Q.; Ma, Y.P. A review on application of composite truss bridges composed of hollow structural section members. J. Traffic Transp. Eng. 2019, 6, 100–114. [Google Scholar] [CrossRef]
- Aslani, F.; Uy, B.; Tao, Z.; Mashiri, F. Predicting the axial load capacity of high-strength concrete filled steel tubular columns. Steel Compos. Struct. 2015, 4, 967–993. [Google Scholar] [CrossRef]
- Xiong, M.X.; Xiong, D.X.; Liew, J.Y.R. Axial performance of short concrete filled steel tubes with high- and ultra-high-strength materials. Eng. Struct. 2017, 4, 494–510. [Google Scholar] [CrossRef]
- Hoang, A.L.; Fehling, E. A review and analysis of circular UHPC filled steel tube columns under axial loading. Steel Compos. Struct. 2017, 4, 417–430. [Google Scholar] [CrossRef]
- Hoang, A.L.; Fehling, E.; Thai, D.K.; Nguyen, C.V. Evaluation of axial strength in circular STCC columns using UHPC and UHPFRC. J. Constr. Steel Res. 2019, 2, 533–549. [Google Scholar] [CrossRef]
- Liu, J.P.; Xu, T.X.; Guo, Y.; Wang, X.D.; Chen, Y.F. Behavior of circular CFRP-steel composite tubed high-strength concrete columns under axial compression. Compos. Struct. 2019, 3, 596–609. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Liu, Z.Z.; Li, S.; Hu, J.Y. Axial compression behavior of hybrid fiber reinforced concrete filled steel tube stub column. Constr. Build. Mater. 2018, 6, 96–107. [Google Scholar] [CrossRef]
- Valle, M.; Buyukozturk, O. Behavior of fiber reinforced high-strength concrete under direct shear. ACI Mater. J. 1993, 2, 122–133. [Google Scholar]
- Nematzadeh, M.; Ghadami, J. Evaluation of interfacial shear stress in active steel tube-confined concrete columns. Steel Compos. Struct. 2017, 4, 469–481. [Google Scholar]
- Li, F.L.; Zhu, Q. Drying shrinkage of concrete affected by content of stone powder in proto-machine-made sand. Adv. Mater. Res. 2010, 152–153, 1176–1179. [Google Scholar] [CrossRef]
- Wang, Z.B.; Tao, Z.; Yu, Q. Axial compressive behavior of concrete-filled double-tube stub columns with stiffeners. Thin Walled Struct. 2017, 120, 91–104. [Google Scholar] [CrossRef]
- Tao, Z.; Uy, B.; Han, L.H.; Wang, Z.B. Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression. Steel Constr. 2009, 12, 1544–1556. [Google Scholar] [CrossRef]
- Ding, F.X.; Luo, L.; Zhu, J.; Wang, L.P.; Yu, Z.W. Mechanical behavior of stirrup-confined rectangular CFT stub columns under axial compression. Thin Walled Struct. 2018, 124, 136–150. [Google Scholar] [CrossRef]
- Uy, B. Axial compressive strength of short steel and composite columns fabricated with high-strength steel plate. Steel Compos. Struct. Int. J. 2001, 2, 113–134. [Google Scholar] [CrossRef]
- Liu, J.P.; Yang, Y.L.; Song, H. Numerical analysis on seismic behaviors of T-shaped concrete-filled steel tubular columns with reinforcement stiffeners. Adv. Struct. Eng. 2018, 9, 1273–1287. [Google Scholar] [CrossRef]
- Zhou, X.H.; Liu, Y.J.; Jiang, L.; Zhang, N. Reviw on mechanical behavior research of concrete filled rectangular hollow section tube stiffened with PBL. China J. Highway. Transp. 2017, 11, 45–62. (In Chinese) [Google Scholar]
- Liu, S.M.; Liu, Y.J.; Li, X.K.; Chen, P.X. Experimental study on steel fiber reinforcement high strength concrete-filled rectangular steel tubular column stiffened with perfobond strip under axial compression. J. Build. Struct. 2018, 12, 22–28. (In Chinese) [Google Scholar]
- Fujimoto, T.; Mukai, A.; Nishiyama, I. Behavior of eccentrically loaded concrete-filled steel tubular columns. ASCE J. Struct. Eng. 2004, 2, 203–212. [Google Scholar] [CrossRef]
- Wang, H.T.; Wang, L.C. Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete. Constr. Build. Mater. 2013, 2, 1146–1151. [Google Scholar] [CrossRef]
- Silva, A.; Jiang, Y.; Castro, J.M.; Silvestre, N.; Monteiro, R. Monotonic and cyclic flexural behaviour of square/rectangular rubberized concrete-filled steel tubes. J. Constr. Steel Res. 2017, 139, 385–396. [Google Scholar] [CrossRef]
- Silva, A.; Jiang, Y.; Castro, J.M.; Silvestre, N.; Monteiro, R. Experimental assessment of the flexural behaviour of circular rubberized concrete-filled steel tubes. J. Constr. Steel Res. 2016, 122, 557–570. [Google Scholar] [CrossRef]
- Silva, A.; Jiang, Y.D.; Macedo, L.; Castro, J.M.; Monteiro, R.; Silvestre, N. Seismic performance of composite moment-resisting frames achieved with sustainable CFST members. Front. Struct. Civ. Eng. 2016, 10, 312–332. [Google Scholar] [CrossRef]
- Jiang, Y.D.; Silva, A.; Castro, J.M.; Monteiro, R.; Silvestre, N. Experimental study and numerical assessment of the flexural behaviour of square and rectangular CFST members under monotonic and cyclic loading. Key Eng. Mater. 2018, 763, 804–811. [Google Scholar] [CrossRef]
- Duarte, A.P.; Silva, B.A.; Silvestre, N.; Brito, J.D.; Júlio, E.; Castro, J.M. Finite element modelling of short steel tubes filled with rubberized concrete. Compos. Struct. 2016, 150, 28–40. [Google Scholar] [CrossRef]
- Ding, X.X.; Li, C.Y.; Han, B.; Lu, Y.Z.; Zhao, S.B. Effects of different deformed steel-fibers on preparation and fundamental properties of self-compacting SFRC. Constr. Build. Mater. 2018, 168, 471–481. [Google Scholar] [CrossRef]
- Ding, X.X.; Li, C.Y.; Li, Y.Z.; Song, C.; Zhao, S.B. Experimental and numerical study on stress-strain behavior of self-compacting SFRC under uniaxial compression. Constr. Build. Mater. 2018, 185, 30–38. [Google Scholar] [CrossRef]
- Zhao, S.B.; Li, C.Y.; Du, H.; Qian, X.J. Study of steel-fiber reinforced high-strength concrete containing large coarse aggregate. J. Build. Mater. 2010, 2, 155–160. (In Chinese) [Google Scholar]
- Zhao, M.L.; Li, J.; Law, D. Effects of flowability on SFRC fiber distribution and properties. Mag. Concrete Res. 2017, 20, 1043–1054. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Li, N.; Li, S.; Liang, H.J. Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Constr. Build. Mater. 2015, 95, 74–85. [Google Scholar] [CrossRef]
- Song, P.S.; Hwang, S. Mechanical properties of high-strength steel fiber reinforced concrete. Constr. Build. Mater. 2004, 9, 669–673. [Google Scholar] [CrossRef]
- Li, C.Y.; Geng, H.B.; Deng, C.H.; Li, B.C.; Zhao, S.B. Experimental investigation on columns of steel fiber reinforced concrete with recycled aggregates under large eccentric compression load. Materials 2019, 3, 445. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Dong, J.F.; Wang, Q.Y. Axial compressive behavior of concrete-filled steel tube columns with stiffeners. Steel Compos. Struct. 2018, 2, 74–85. [Google Scholar]
- Peng, K.D.; Yu, T.; Hadi, M.N.S. Compressive behavior of hybrid double-skin tubular columns with a rib-stiffened steel inner tube. Compos. Struct. 2018, 204, 634–644. [Google Scholar] [CrossRef]
- Tokgoz, S.; Dundar, C. Experimental study on steel tubular columns in-filled with plain and steel fiber reinforced concrete. Thin Walled Struct. 2010, 6, 414–422. [Google Scholar] [CrossRef]
- Tokgoz, S. Tests on plain and steel fiber concrete-filled stainless-steel tubular columns. J. Constr. Steel Res. 2015, 114, 129–135. [Google Scholar] [CrossRef]
- Kim, S.H.; Kang, M.W.; Yom, K.S.; Choi, S.M. Structural performance of welded built-up square CFT column with steel fiber. In Proceedings of the Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13), Sapporo, Japan, 11–13 September 2013. [Google Scholar]
- Campione, G.; Mindess, S.; Scibilia, N.; Zingone, G. Strength of hollow circular steel sections filled with fibre-reinforced concrete. Can. J. Civ. Eng. 2011, 2, 364–372. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Liu, H.W. Axial compression behavior of circular recycled concrete-filled steel tubular short columns reinforced by silica fume and steel fiber. Steel Compos. Struct. 2018, 2, 193–200. [Google Scholar]
- Campione, G.; Mendola, L.L.; Sanpaolesi, L.; Scibilia, N.; Zingone, G. Behavior of fiber reinforced concrete-filled tubular columns in compression. Mater Struct. 2002, 6, 332–337. [Google Scholar] [CrossRef]
- Ding, Q.J.; Zhou, X.; Mou, T.; Fan, B.K.; Yan, Y.L. Bond properties at interface of fiber reinforced micro-expansion concrete-filled steel tube. J. Funct. Mater. 2013, 6, 809–813. [Google Scholar]
- Hatzigeorgiou, G.D.; Beskos, D.E. Minimum cost design of fiber-reinforced concrete-filled steel tubular columns. J. Constr. Steel Res. 2005, 2, 167–182. [Google Scholar] [CrossRef]
- Choi, C.S.; Jung, H.S.; Choi, H.K. Behavior of concrete filled steel square-tube stub column with steel-fiber reinforced high strength concrete. Adv. Mater. Res. 2013, 663, 125–129. [Google Scholar] [CrossRef]
- Guler, S.; Lale, E.; Aydogan, M. Behavior of SFRC filled steel tube columns under axial load. Adv. Steel Constr. 2013, 1, 14–25. [Google Scholar]
- Gajalakshmi, P.; Helena, H.J. Behavior of concrete-filled steel columns subjected to lateral cyclic loading. J. Constr. Steel Res. 2012, 75, 55–63. [Google Scholar] [CrossRef]
- Ding, F.X.; Fang, C.; Bai, Y.; Gong, Y.Z. Mechanical performance of stirrup-confined concrete-filled steel tubular stub columns under axial loading. J. Constr. Steel Res. 2014, 98, 146–157. [Google Scholar] [CrossRef]
- GB 50936-2014, MHURC-PRC. Technical Code for Concrete Filled Steel Tubular Structures; China Building Industry Press: Beijing, China, 2014. (In Chinese)
- JG/T472-2015, Ministry of Housing and Urban-Rural Construction of the People’s Republic of China (MHURC-PRC), Steel Fiber Reinforced Concrete; China Standards Press: Beijing, China, 2015. (In Chinese)
- GB/T 50081-2002, MHURC-PRC, Standard for Test Method of Mechanical Properties on Ordinary Concrete; China Building Industry Press: Beijing, China, 2002. (In Chinese)
- GB50661-2011, MHURC-PRC. Code for Welding of Steel Structures; China Building Industry Press: Beijing, China, 2011. (In Chinese)
- GB/T50152-2012, MHURC-PRC. Standard of Test Methods of Concrete Structures; China Building Industry Press: Beijing, China, 2012. (In Chinese)
- Tao, Z.; Han, L.H.; Wang, Z.B. Experimental behavior of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns. J. Constr. Steel Res. 2005, 61, 962–983. [Google Scholar] [CrossRef]
Identifier | Cement (kg/m3) | Slag Powder (kg/m3) | Water (kg/m3) | Sand (kg/m3) | Coarse Aggregate (kg/m3) | Steel Fiber (kg/m3) | Water Reducer (kg/m3) |
---|---|---|---|---|---|---|---|
CF60/1.2 | 583.3 | 0 | 175 | 754.4 | 865.9 | 94.2 | 5.9 |
C70/0 | 546.6 | 60.7 | 175 | 605.0 | 1030.2 | 0 | 7.3 |
CF70/1.2 | 543.1 | 60.3 | 175 | 769.7 | 885.4 | 94.2 | 7.3 |
CF80/0.8 | 544.0 | 136.0 | 170 | 732.8 | 949.2 | 62.8 | 0.3 |
CF80/1.2 | 544.0 | 136.0 | 170 | 775.3 | 892.5 | 94.2 | 0.3 |
CF80/1.6 | 544.0 | 136.0 | 170 | 835.5 | 816.6 | 125.6 | 0.3 |
Specimen ID | fcu (MPa) | fc (MPa) | θ | Stiffener Type | Hole Space(mm) | Volume Fraction of Steel Fiber (%) |
---|---|---|---|---|---|---|
A-120-CF80/1.2 | 88.0 | 54.6 | 0.45 | Perfobond rib | 120 | 1.2 |
A-90-CF80/1.2 | 82.0 | 51.3 | 0.48 | 90 | 1.2 | |
A-60-CF80/1.2 | 82.0 | 51.3 | 0.48 | 60 | 1.2 | |
A-60-CF80/0.8 | 85.3 | 53.2 | 0.47 | 60 | 0.8 | |
A-60-CF80/1.6 | 83.0 | 51.9 | 0.48 | 60 | 1.6 | |
A-60-CF60/1.2 | 59.7 | 38.3 | 0.65 | 60 | 1.2 | |
A-60-CF70/1.2 | 81.7 | 51.2 | 0.49 | 60 | 1.2 | |
A-60-C70/0 | 71.7 | 45.5 | 0.55 | 60 | 0 | |
B-0-CF80/1.2 | 75.0 | 47.4 | 0.53 | Steel plate rib | - | 1.2 |
C-0-CF80/1.2 | 84.3 | 52.6 | 0.47 | No rib | - | 1.2 |
Specimen | Nu,t (kN) | δu (mm) | (DI)t | E (MN.mm) | Nu,c (kN) | Nu,t/Nu,c | (DI)c | (DI)t/(DI)c |
---|---|---|---|---|---|---|---|---|
A-120-CF80/1.2 | 7488.3 | 3.1 | 1.927 | 36.77 | 7395.6 | 1.013 | 1.857 | 1.037 |
A-90-CF80/1.2 | 7040.6 | 3.1 | 1.932 | 34.52 | 6971.5 | 1.010 | 1.868 | 1.034 |
A-60-CF80/1.2 | 7050.6 | 3.2 | 1.951 | 35.65 | 6971.5 | 1.011 | 1.884 | 1.036 |
A-60-CF80/0.8 | 7257.6 | 3.3 | 1.858 | 35.43 | 7215.7 | 1.006 | 1.774 | 1.047 |
A-60-CF80/1.6 | 7121.7 | 3.3 | 1.986 | 37.67 | 7048.8 | 1.010 | 1.976 | 1.005 |
A-60-CF60/1.2 | 5288.4 | 2.9 | 2.115 | 26.84 | 5300.0 | 0.998 | 2.035 | 1.039 |
A-60-CF70/1.2 | 7029.1 | 3.2 | 1.951 | 35.53 | 6958.7 | 1.010 | 1.886 | 1.035 |
A-60-C70/0 | 6212.2 | 3.1 | 1.652 | 24.90 | 6225.3 | 0.998 | 1.669 | 0.990 |
B-0-CF80/1.2 | 6827.6 | 3.5 | 1.718 | 32.70 | 6663.8 | 1.025 | 1.921 | 0.894 |
C-0-CF80/1.2 | 6853.9 | 3.4 | 1.749 | 33.63 | 6951.9 | 0.986 | 1.863 | 0.939 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Ding, X.; Li, X.; Liu, Y.; Zhao, S. Behavior of Rectangular-Sectional Steel Tubular Columns Filled with High-Strength Steel Fiber Reinforced Concrete Under Axial Compression. Materials 2019, 12, 2716. https://doi.org/10.3390/ma12172716
Liu S, Ding X, Li X, Liu Y, Zhao S. Behavior of Rectangular-Sectional Steel Tubular Columns Filled with High-Strength Steel Fiber Reinforced Concrete Under Axial Compression. Materials. 2019; 12(17):2716. https://doi.org/10.3390/ma12172716
Chicago/Turabian StyleLiu, Shiming, Xinxin Ding, Xiaoke Li, Yongjian Liu, and Shunbo Zhao. 2019. "Behavior of Rectangular-Sectional Steel Tubular Columns Filled with High-Strength Steel Fiber Reinforced Concrete Under Axial Compression" Materials 12, no. 17: 2716. https://doi.org/10.3390/ma12172716
APA StyleLiu, S., Ding, X., Li, X., Liu, Y., & Zhao, S. (2019). Behavior of Rectangular-Sectional Steel Tubular Columns Filled with High-Strength Steel Fiber Reinforced Concrete Under Axial Compression. Materials, 12(17), 2716. https://doi.org/10.3390/ma12172716