Temporal Acoustic Emission Index for Damage Monitoring of RC Structures Subjected to Bidirectional Seismic Loadings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens and Experimental Set-up
2.2. AE Monitoring
2.3. Plastic Strain Energy
2.3.1. Estimation of the Energy Absorbed by Columns
2.3.2. Estimation of the Energy Absorbed by the Waffle-Flat Plate
3. Results
3.1. Accumulated AE Energy
3.2. Temporal Damage Index (TDI)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EM-DAT the International Disaster Database: 2018 Review of Disaster Events. Available online: https://www.emdat.be/ (accessed on 24 January 2019).
- Miller, R.K.; Hill, E.K.; Moore, P.O. Acoustic Emission Testing; American Society for Nondestructive Testing: Columbus, OH, USA, 2008; Volume 3, p. 446. [Google Scholar]
- Grosse, C.U.; Ohtsu, M. Acoustic Emission Testing; Springer: Heidelberg, Germany, 2008. [Google Scholar]
- Gallego, A.; Martinez, E. Emisión acústica. Niveles 1 y 2; AEND: Madrid, Spain, 2014; Volume 1, p. 374. [Google Scholar]
- Mizutani, Y. Practical Acoustic Emission Testing; Japanese Society for Non-Destructive Inspection; Springer: Tokyo, Japan, 2016; Volume 1, p. 240. [Google Scholar]
- Yuyama, S.; Li, Z.W.; Yoshizawa, M.; Tomokiyo, T.; Uomoto, T. Evaluation of fatigue damage in reinforced concrete plate by acoustic emission. Nondestruct. Test. Eval. Int. 2001, 34, 381–387. [Google Scholar]
- Ziehl, P.H. Applications of acoustic emission evaluation for civil infrastructure. In Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security; International Society for Optics and Photonics: Diego, CA, USA, 2018; Volume 6934, p. 69340I. [Google Scholar]
- Ono, K. Application of acoustic emission for structure diagnosis. In Proceedings of the 56 Scientific Conference, 2010; pp. 317–341. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BAR0-0060-0020 (accessed on 30 August 2019).
- Li, W.; Xu, C.; Ho, S.; Wang, B. Monitoring concrete deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements. Sensors 2017, 17, 657. [Google Scholar]
- Gallego, A.; Benavent-Climent, A.; Infantes, C. Health monitoring of reinforced concrete plates subjected to earthquake-type dynamic loading via measurement and analysis of acoustic emission signals. Smart Struct. Syst. 2011, 8, 385–398. [Google Scholar] [CrossRef]
- Benavent-Climent, A.; Gallego, A.; Vico, J.M. An acoustic emission energy index for damage evaluation of reinforced concrete plates under seismic loads. Struct. Health Monit. 2011, 11, 69–81. [Google Scholar] [CrossRef]
- Sagasta, F.A.; Morillas, L.; Benavent, C.A.; Suarez, E. Discrimination of AE signals from friction and concrete cracking in a reinforced concrete frame subjected to seismic trainings. Smart Struct.Mater 2013, 1–15. [Google Scholar]
- Zitto, M.E.; Piotrkowski, R.; Gallego, A.; Sagasta, F.; Benavent-Climent, A. Damage assessed by wavelet scale bands and b-value in dynamical test of a reinforced concrete plate monitored with acoustic emission. Mech. Syst. Signal. Process. 2015, 60–61, 75–89. [Google Scholar] [CrossRef]
- Sagasta, F.; Zitto, M.E.; Piotrkowski, R.; Benavent-Climent, A.; Suarez, E.; Gallego, A. Acoustic emission energy b-value for local damage evaluation in reinforced concrete structures subjected to seismic loadings. Mech Syst Signal. Process. 2018, 102, 262–277. [Google Scholar] [CrossRef]
- Sagasta, F.; Benavent-Climent, A.; Roldán, A.; Gallego, A. Correlation of plastic strain energy and acoustic emission energy in reinforced concrete structures. Appl. Sci. 2016, 6, 1–15. [Google Scholar]
- Cortés, G.; Suárez, E.; Gallego, A.; Benavent-Climent, A. Health monitoring of reinforced concrete structures with hysteretic dampers subjected to dynamical loads by means of the acoustic emission energy. Struct. Health Monit. 2018. [Google Scholar] [CrossRef]
- Ono, K.; Ohtsu, M. Crack classification in concrete based on acoustic emission. Constr. Build. Mater. 2010, 24, 2339–2346. [Google Scholar] [CrossRef]
- Aggelis, D.G. Classification of cracking mode in concrete by acoustic emission parameters. Mech Res. Commun 2011, 38, 153–157. [Google Scholar] [CrossRef]
- Shahidan, S.; Pulin, R.; Bunnori, N.M.; Holford, K.M. Damage classification in reinforced concrete beam by acoustic emission signal analysis. Constr Build. Mater. 2013, 45, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Farnam, Y.; Geiker, M.R.; Bentz, D.; Weiss, J. Acoustic emission waveform characterization of crack origin and mode in fractured and ASR damaged concrete. Cem. Concr. Compos. 2015, 60, 135–145. [Google Scholar] [CrossRef]
- Procedure for Acoustic Emission Evaluation of Tank Cars and IM-101 Tanks. Issue 8; Operation and Maintenance Department, Association of American Railroads: Washington, DC, USA, 1999; Volume 202.
- Soltangharaei, V.; Anay, R.; Hayes, N.; Assi, L.; LePape, Y.; Ma, Z.; Ziehl, P. Damage mechanism evaluation of large-scale concrete structures affected by alkali-silica reaction using acoustic emission. Appl Sci 2018, 8, 2148. [Google Scholar] [CrossRef]
- Benavent-Climent, A.; Galé-Lamuela, D.; Donaire-Avila, J. Energy capacity and seismic performance of RC waffle-flat plate structures under two components of far-field ground motions: Shake table tests. Earthq. Eng. Struct. Dyn. 2019, 48, 949–969. [Google Scholar] [CrossRef]
- Available online: http://www.vallen.de/ (accessed on 18 June 2019).
- Menegotto, M.; Pinto, P.E. Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. In Title of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads; IABSE: Zurich, Switzerland, 1973; pp. 15–22. [Google Scholar]
- Maekawa, K.; Pimanmas, A.; Okamura, H. Nonlinear mechanics of Reinforced Concrete; Spon Press: New York, NY, USA, 2003; Volume 768. [Google Scholar]
- Benavent-Climent, A.; Donaire-Avila, J.; Oliver-Saiz, E. Shaking table tests of a reinforced concrete waffle–flat plate structure designed following modern codes: Seismic performance and damage evaluation. Earthq. Eng. Struct. Dyn. 2016, 45, 315–336. [Google Scholar] [CrossRef]
Specimen BS1 | ||||||
C35 | C50 | C100 | C200 | C200b | ||
PGA (g) | 0.07 | 0.10 | 0.19 | 0.42 | 0.42 | |
Specimen BS2 | ||||||
B15 | B25 | B50 | B100 | B130 | B130b | |
PGA (g) | 0.06 | 0.09 | 0.19 | 0.37 | 0.48 | 0.48 |
Amplitude (dBAE) | DL (μs) |
---|---|
41–43 | >400 |
44–45 | >500 |
46–47 | >600 |
48–49 | >650 |
50–53 | >820 |
54–56 | >940 |
57–65 | >1080 |
66–100 | >1400 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abarkane, C.; Rescalvo, F.J.; Donaire-Ávila, J.; Galé-Lamuela, D.; Benavent-Climent, A.; Gallego Molina, A. Temporal Acoustic Emission Index for Damage Monitoring of RC Structures Subjected to Bidirectional Seismic Loadings. Materials 2019, 12, 2804. https://doi.org/10.3390/ma12172804
Abarkane C, Rescalvo FJ, Donaire-Ávila J, Galé-Lamuela D, Benavent-Climent A, Gallego Molina A. Temporal Acoustic Emission Index for Damage Monitoring of RC Structures Subjected to Bidirectional Seismic Loadings. Materials. 2019; 12(17):2804. https://doi.org/10.3390/ma12172804
Chicago/Turabian StyleAbarkane, Chihab, Francisco J. Rescalvo, Jesús Donaire-Ávila, David Galé-Lamuela, Amadeo Benavent-Climent, and Antolino Gallego Molina. 2019. "Temporal Acoustic Emission Index for Damage Monitoring of RC Structures Subjected to Bidirectional Seismic Loadings" Materials 12, no. 17: 2804. https://doi.org/10.3390/ma12172804
APA StyleAbarkane, C., Rescalvo, F. J., Donaire-Ávila, J., Galé-Lamuela, D., Benavent-Climent, A., & Gallego Molina, A. (2019). Temporal Acoustic Emission Index for Damage Monitoring of RC Structures Subjected to Bidirectional Seismic Loadings. Materials, 12(17), 2804. https://doi.org/10.3390/ma12172804