The Effect of Surface Modification of Ti13Zr13Nb Alloy on Adhesion of Antibiotic and Nanosilver-Loaded Bone Cement Coatings Dedicated for Application as Spacers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens Preparation
2.1.1. Titanium Specimens Fabrication
2.1.2. Cement Coating Preparation
2.2. Surface Evaluation of Titanium Specimens
2.2.1. Surface Topography
2.2.2. Surface Roughness
2.2.3. Surface Wettability and Surface Energy
2.2.4. Surface Nanomechanical Properties
2.3. Assessment of Cement Cohesion and its Adhesion to the Surface of Titanium Specimens
2.3.1. Cohesion of Cement
2.3.2. Adhesion of Cements to the Titanium Surface
2.4. Assessment of Biological Properties of Bone Cement Coatings
2.4.1. Inhibition of Bacterial Growth
2.4.2. Cytocompatibility
2.5. Statistical Method
3. Results and Discussion
3.1. Surface Evaluation of Titanium Alloy Specimens
3.1.1. Surface Topography Evaluation
3.1.2. Surface Roughness Evaluation
3.1.3. Surface Wettability and Surface Energy Evaluation
3.1.4. Surface Nanomechanical Properties Evaluation
3.2. Creation of Bone Cement Coating on Titanium Specimens
3.3. Assessment of Cement Adhesion to the Surface of Titanium Specimens
3.4. Assessment of Biological Properties of Bone Cement Coating
3.4.1. Inhibition of Bacterial Growth
3.4.2. Results of Cytocompatibility Studies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Soffiatti, R. The preformed spacers: From the idea to the realization of an industrial device. In Infection and Local Treatment in Orthopedic Surgery; Meani, E., Romano, C., Crosby, L., Hofmann, G., Calonego, G., Eds.; Springer: Berlin, Germany, 2007; pp. 112–120. [Google Scholar]
- Cigada, A.; Brunella, M.F. Surface analysis of the spacer before and after the clinical use. In Infection and Local Treatment in Orthopedic Surgery; Meani, E., Romano, C., Crosby, L., Hofmann, G., Calonego, G., Eds.; Springer: Berlin, Germany, 2007; pp. 136–147. [Google Scholar]
- Magnan, B.; Regis, D.; Costa, A.; Bartolozzi, P. Two-stage revision of infected total hip replacement using a preformed, antibiotic-loaded acrylic cement spacer. In Infection and Local Treatment in Orthopedic Surgery; Meani, E., Romano, C., Crosby, L., Hofmann, G., Calonego, G., Eds.; Springer: Berlin, Germany, 2007; pp. 205–213. [Google Scholar]
- Ginebra, M.; Montufar, E.B. Cements as bone repair materials. In Bone Repair Biomaterials, 2nd ed.; Pawelec, K.M., Planell, J.A., Eds.; Woodhead Publishing: Sawston/Cambridge, UK, 2019; pp. 233–271. [Google Scholar]
- Burnett, R.S.J.; Clohisy, J.C.; Barrack, R.L. Antibiotic cement spacers in total hip and total knee arthroplasty: Problems, pitfalls, and avoiding complications. In Bone Repair Biomaterials, 2nd ed.; Pawelec, K.M., Planell, J.A., Eds.; Woodhead Publishing: Sawston/Cambridge, UK, 2019; pp. 92–111. [Google Scholar]
- Jones, C.W.; Selemon, N.; Nocon, A.; Bostrom, M.; Westrich, G.; Sculco, P.K. The Influence of spacer design on the rate of complications in two-Stage revision hip arthroplasty. J. Arthroplasty 2019, 34, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Jeffers, J.R.T.; Browne, M.; Lennon, A.B.; Prendergast, P.J.; Taylor, M. Cement mantle fatigue failure in total hip replacement: Experimental and computational testing. J. Biomech. 2007, 40, 1525–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gravius, S.; Wirtz, D.C.; Siebert, C.H.; Andereya, S.; Mueller-Rath, R.; Maus, U.; Mumme, T. In vitro interface and cement mantle analysis of different femur stem designs. J. Biomech. 2008, 41, 2021–2028. [Google Scholar] [CrossRef] [PubMed]
- Khandaker, M.; Riahinezhad, S.; Sultana, F.; Morris, T.; Knight, J.; Vaughan, M. Peen treatment on a titanium implant: Effect of roughness, osteoblast cell functions, and bonding with bone cement. Int. J. Nanomed. 2016, 11, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Marx, B.; Marx, C.; Marx, R.; Reisgen, U.; Wirtz, D.C. Bone cement adhesion on ceramic surfaces-Surface activation of retention surfaces of knee endoprostheses by atmospheric pressure plasma vs. thermal surface treatment. J. Adv. Ceram. 2016, 5, 137–144. [Google Scholar] [CrossRef]
- Ohashi, K.L.; Romero, A.C.; McGowan, P.D.; Maloney, W.J.; Dauskardt, R.H. Adhesion and reliability of interfaces in cemented total joint arthroplasties. J. Orthop. Res. 1998, 16, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Singh, G. Surface treatment of dental implants: A review. J. Dent. Med. Sci. 2018, 17, 49–53. [Google Scholar] [CrossRef]
- Devgan, S.; Sidhu, S.S. Evolution of surface modification trends in bone related biomaterials: A review. Mater. Chem. Phys. 2019, 233, 68–78. [Google Scholar] [CrossRef]
- Szmukler-Moncler, S.; Perrin, D.; Ahossi, V.; Magnin, G.; Bernard, J.P. Biological properties of acid etched titanium implants: Effect of sandblasting on bone anchorage. J. Biomed. Mater. Res. B 2004, 68, 149–159. [Google Scholar] [CrossRef]
- Ma, T.; Ge, X.; Zhang, Y.; Lin, Y. Effect of titanium surface modifications of dental implants on rapid osseointegration. In Interface Oral Health Science 2016; Sasaki, K., Suzuki, O., Takahashi, N., Eds.; Springer: Singapore, 2016; pp. 247–256. [Google Scholar]
- Ho, B.J.; Tsoi, J.K.H.; Liu, D.; Lung, C.Y.K.; Wong, H.M.; Matinlinna, J.P. Effects of sandblasting distance and angles on resin cement bonding to zirconia and titanium. Int. J. Adhes. Adhes. 2015, 62, 25–31. [Google Scholar] [CrossRef]
- Tęczar, P.; Majkowska-Marzec, B.; Bartmański, M. The influence of laser alloying of Ti13Nb13Zr on surface topography and properties. Adv. Mater. Sci. 2019, 19, 44–57. [Google Scholar] [CrossRef]
- Chen, A.F.; Parvizi, J. Antibiotic-loaded bone cement and periprosthetic joint infection. J. Long Term Eff. Med. Implants 2014, 24, 89–97. [Google Scholar] [CrossRef]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Zhang, B.; Pei, X.; Zhou, C.; Fan, Y.; Jiang, Q.; Ronca, A.; D’Amora, U.; Chen, Y.; Li, H.; Sun, Y.; et al. The biomimetic design and 3D printing of customized mechanical properties porous Ti6Al4V scaffold for load-bearing bone reconstruction. Mater. Des. 2018, 152, 30–39. [Google Scholar] [CrossRef]
- Koutiri, I.; Pessard, E.; Peyre, P.; Amlou, O.; De Terris, T. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts. J. Mater. Process. Technol. 2018, 255, 536–546. [Google Scholar] [CrossRef]
- Sallica-Leva, E.; Jardini, A.L.; Fogagnolo, J.B. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting. J. Mech. Behav. Biomed. Mater. 2013, 26, 98–108. [Google Scholar] [CrossRef]
- Armstrong, S.R.; Boyer, D.B.; Keller, J.C. Microtensile bond strength testing and failure analysis of two dentin adhesives. Dent. Mater. 1998, 14, 44–50. [Google Scholar] [CrossRef]
- Liu, D.; Kit, J.; Tsoi, H.; Matinlinna, J.P.; Wong, H.M. Effects of some chemical surface modifications on resin zirconia adhesion. J. Mech. Behav. Biomed. Mater. 2015, 46, 23–30. [Google Scholar] [CrossRef]
- International Standard ISO 5833. Implants for Surgery—Acrylic Resin Cements; International Standard ISO: Geneva, Switzerland, 2002. [Google Scholar]
- Wekwejt, M.; Michno, A.; Truchan, K.; Pałubicka, A.; Świeczko-Żurek, B.; Osyczka, A.M.; Zieliński, A. Antibacterial activity and cytocompatibility of bone cement enriched with antibiotic, nanosilver, and nanocopper for bone regeneration. Nanomaterials 2019, 9, 1114. [Google Scholar] [CrossRef]
- Wekwejt, M.; Moritz, M.; Świeczko-Żurek, B.; Pałubicka, A. Biomechanical testing of bioactive bone cements—A comparison of the impact of modifiers: Antibiotics and nanometals. Polym. Test. 2018, 70, 234–243. [Google Scholar] [CrossRef]
- Wekwejt, M.; Pałubicka, A. Antibacterial evaluation of bioactive modifiers of bone cements: Antibiotics, nanometals and chitosan. Eur. J. Med. Technol. 2018, 3, 6–10. [Google Scholar]
- International Standard ISO 4287–1997. Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters; International Standard ISO 4287–1997: Geneva, Switzerland, 1997. [Google Scholar]
- Kaelble, D.H. Dispersion-polar surface tension properties of organic solids. J. Adhes. 1970, 2, 66–81. [Google Scholar] [CrossRef]
- Owens, D.; Wendt, R. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Rabel, W. Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren. In Farbe und Lack; Habenicht, G., Ed.; Springer: Berlin, Germany, 1971; pp. 997–1005. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiment. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Tannant, D.D.; Ozturk, H. Evaluation of test methods for measuring adhesion between a liner and rock. In Proceedings of the 3rd International Seminar on Surface Support Linears, Quebec City, QC, Canada, 25–26 August 2003. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Tuck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Fousová, M.; Vojtěch, D.; Kubásek, J.; Jablonská, E.; Fojt, J. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process. J. Mech. Behav. Biomed. Mater. 2017, 69, 368–376. [Google Scholar] [CrossRef]
- Vayssette, B.; Saintier, N.; Brugger, C.; Elmay, M.; Pessard, E. Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: Effect on the high cycle fatigue life. Procedia 2018, 213, 89–97. [Google Scholar] [CrossRef]
- Vaithilingam, J.; Goodridge, R.D.; Christie, S.D.; Edmondson, S.; Hague, R.J.M. Surface modification of selective melted structures using self-assembled monolayers for biomedical applications. In Proceedings of the 23rd International Symposium on Solid Freeform Fabrication, Austin, TX, USA, 12–14 August 2012. [Google Scholar]
- Xu, R.; Hu, X.; Yu, X.; Wan, S.; Wu, F.; Ouyang, J.; Deng, F. Micro-/nano-topography of selective laser melting titanium enhances adhesion and proliferation and regulates adhesion-related gene expressions of human gingival fibroblasts and human gingival epithelial cells. Int. J. Nanomed. 2018, 13, 5045–5057. [Google Scholar] [CrossRef]
- Al-Radha, A.S.D. The impact of different acids etch on sandblasted titanium dental implant surfaces topography. J. Dent. Med. Sci. 2016, 15, 83–86. [Google Scholar] [CrossRef]
- Hatamleh, M.M.; Wu, X.; Alnazzawi, A.; Watson, J.; Watts, D. Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments. Dent. Mater. 2018, 34, 676–683. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, C.; Padrós, A.; Gil, F.J. In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests. J. Mech. Behav. Biomed. Mater. 2011, 4, 1672–1682. [Google Scholar] [CrossRef]
- Manjaiah, M.; Laubscher, R.F. A review of the surface modifications of titanium alloys for biomedical applications. Mater. Technol. 2017, 51, 181–190. [Google Scholar] [CrossRef]
- Boyan, B.D.; Hummert, T.W.; Dean, D.D.; Schwartz, Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996, 17, 137–146. [Google Scholar] [CrossRef]
- Le Guéhennec, L.; Soueidan, A.; Layrolle, P.; Amouriq, Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 2007, 23, 844–854. [Google Scholar] [CrossRef]
- Comyn, J. Contact angles and adhesive bonding. Int. Adhes. Adhes. 1992, 12, 145–149. [Google Scholar] [CrossRef]
- Rudowska, A. Assessment of Surface Preparation for the Bonding/Adhesive Technology; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Tao, Z.; Yaoyao, S.; Laakso, S.; Jinming, Z. Investigation of the effect of grinding parameters on surface quality in grinding of TC4 titanium alloy. Procedia Manuf. 2017, 11, 2131–2138. [Google Scholar] [CrossRef]
- Radtke, A.; Ehlert, M.; Jędrzejewski, T.; Bartmański, M. The morphology, structure, mechanical properties and biocompatibility of nanotubular titania coatings before and after autoclaving process. J. Clin. Med. 2019, 8, 272. [Google Scholar] [CrossRef]
- Araghi, A.; Hadianfard, M.J. Fabrication and characterization of functionally graded hydroxyapatite/TiO2 multilayer coating on Ti-6Al-4V titanium alloy for biomedical applications. Ceram. Int. 2015, 41, 12668–12679. [Google Scholar] [CrossRef]
- He, Y.H.; Zhang, Y.Q.; Jiang, Y.H.; Zhou, R. Microstructure evolution and enhanced bioactivity of Ti-Nb-Zr alloy by bioactive hydroxyapatite fabricated: Via spark plasma sintering. RSC Adv. 2016, 6, 100939–100953. [Google Scholar] [CrossRef]
- Kulkarni, M.; Mazare, A.; Schmuki, P.; Iglič, A. Biomaterial surface modification of titanium and titanium alloys for medical applications. In Nanomedicine; Seifalian, A., de Mel, A., Kalaskar, D.M., Eds.; One Central Press: Cheshire, UK, 2014; pp. 111–136. [Google Scholar]
- Masanta, M.; Shariff, S.M.; Choudhury, A.R. Evaluation of modulus of elasticity, nano-hardness and fracture toughness of TiB2–TiC–Al2O3 composite coating developed by SHS and laser cladding. Mater. Sci. Eng. A 2011, 528, 5327–5335. [Google Scholar] [CrossRef]
- Hynowska, A.; Pellicer, E.; Fornell, J.; Gonzalez, S.; van Steenberge, N.; Surinach, S.; Gebert, A.; Calin, M.; Eckert, J.; Baro, M.D.; et al. Nanostructured β-phase Ti–31.0Fe–9.0Sn and sub-μm structured Ti–39.3Nb–13.3Zr–10.7Ta alloys for biomedical applications: Microstructure benefits on the mechanical and corrosion performances. Mater. Sci. Eng. C 2012, 32, 2418–2425. [Google Scholar] [CrossRef]
- Fornell, J.; van Steenberge, N.; Varea, A.; Rossinyol, E.; Pellicer, E.; Surinach, S.; Baro, M.D.; Sort, J. Enhanced mechanical properties and in vitro corrosion behavior of amorphous and devitrified Ti40Zr10Cu38Pd12 metallic glass. J. Mech. Behav. Biomed. Mater. 2011, 4, 1709–1717. [Google Scholar] [CrossRef]
- Russo, T.; Gloria, A.; De Santis, R.; D’Amora, U.; Balato, G.; Vollaro, A.; Oliviero, O.; Improta, G.; Triassi, M.; Ambrosio, L. Bioactive materials preliminary focus on the mechanical and antibacterial activity of a PMMA-based bone cement loaded with gold nanoparticles. Bioact. Mater. 2017, 2, 156–161. [Google Scholar] [CrossRef]
- Russo, T.; Gloria, A.; D’Anto, V.; D’Amora, U.; Ametrano, G.; Bollino, F.; De Santis, R.; Ausanio, G.; Catauro, M.; Rengo, S.; et al. Poly (ε-caprolactone) reinforced with sol-gel synthesized organic-inorganic hybrid fillers as composite substrates for tissue engineering. J. Appl. Biomater. Biomech. 2010, 8, 146–152. [Google Scholar] [CrossRef]
- Dunne, N.J.; Leonard, D.; Daly, C.; Buchanan, F.J.; Orr, J.F. Validation of the small-punch test as a technique for characterizing the mechanical properties of acrylic bone cement. Proc. Inst. Mech. Eng. H 2006, 220, 11–21. [Google Scholar] [CrossRef]
- Rossi De Aguiar, K.M.F.; Specht, U.; Maass, J.F.; Picon, C.A.; Noeske, P.L.M.; Rischka, K.; Rodrigues-Filho, U.P. Surface modification by physical treatments on biomedical grade metals to improve adhesion for bonding hybrid non-isocyanate urethanes. RSC Adv. 2016, 6, 47203–47211. [Google Scholar] [CrossRef] [Green Version]
- Júlio, E.N.B.S.; Branco, F.A.B.; Silva, V.D. Concrete-to-concrete bond strength. Influence of the roughness of the substrate surface. Constr. Build. Mater. 2004, 18, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, R.G.; Haneda, I.G.; De Almeida-Júnior, A.A.; De Oliveira Abi-Rached, F.; Adabo, G.L. Efficacy of air-abrasion technique and additional surface treatment at titanium/resin cement interface. J. Adhes. Dent. 2012, 14, 453–459. [Google Scholar]
- Wang, H.; Feng, Q.; Li, N.; Xu, S. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques. J. Prosthet. Dent. 2016, 116, 916–923. [Google Scholar] [CrossRef]
- Xiang, N.; Xin, X.Z.; Chen, J.; Wei, B. Metal–ceramic bond strength of Co–Cr alloy fabricated by selective laser melting. J. Dent. 2012, 40, 453–457. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, H.; Gai, X.; Wang, Y. Evaluation of the mechanical properties and porcelain bond strength of cobalt-chromium dental alloy fabricated by selective laser melting. J. Prosthet. Dent. 2014, 111, 51–55. [Google Scholar] [CrossRef]
- Frutos, G.; Pastorr, J.Y.; Martinez, N.; Virto, M.R.; Torrado, S. Influence of lactose addition to gentamicin-loaded acrylic bone cement on the kinetics of release of the antibiotic and the cement properties. Acta Biomater. 2010, 6, 804–811. [Google Scholar] [CrossRef]
- Miola, M.; Bistolfi, A.; Valsania, M.C.; Bianco, C.; Fucale, G.; Verné, E. Antibiotic-loaded acrylic bone cements: An in vitro study on the release mechanism and its efficacy. Mater. Sci. Eng. C 2013, 33, 3025–3032. [Google Scholar] [CrossRef]
- Prokopovich, P.; Köbrick, M.; Brousseau, E.; Perni, S. Potent antimicrobial activity of bone cement encapsulating silver nanoparticles capped with oleic acid. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 273–281. [Google Scholar] [CrossRef]
- Alt, V.; Bechert, T.; Steinrücke, P.; Wagener, M.; Seidel, P.; Dingeldein, E.; Domann, E.; Schnettler, R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004, 25, 4383–4391. [Google Scholar] [CrossRef]
- Slane, J.; Vivanco, J.; Rose, W.; Ploeg, H.L.; Squire, M. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Mater. Sci. Eng. C 2015, 48, 188–196. [Google Scholar] [CrossRef]
- Moojen, D.J.F.; Vogely, H.C.; Fleer, A.; Verbout, A.J.; Castelein, R.M.; Dhert, W.J.A. No efficacy of silver bone cement in the prevention of methicillin-sensitive Staphylococcal infections in a rabbit contaminated implant bed model. J. Orthop. Res. 2009, 27, 1002–1007. [Google Scholar] [CrossRef]
- Pauksch, L.; Hartmann, S.; Szalay, G.; Alt, V.; Lips, K.S. In vitro assessment of nanosilver-functionalized PMMA bone cement on primary human mesenchymal stem cells and osteoblasts. PLoS ONE 2014, 9, e114740. [Google Scholar] [CrossRef]
- Matos, A.C.; Goncalves, L.M.; Rijo, P.; Vaz, M.A.; Almeida, A.J.; Bettencourt, A.F. A novel modified acrylic bone cement matrix. A step forward on antibiotic delivery against multiresistant bacteria responsible for prosthetic joint infections. Mater. Sci. Eng. C 2014, 38, 218–226. [Google Scholar] [CrossRef]
- Paz, E.; Sanz-Ruiz, P.; Abenojar, J.; Vaquero-Martín, J.; Forriol, F.; Del Real, J.C. Evaluation of elution and mechanical properties of high-dose antibiotic-loaded bone cement: Comparative “In Vitro” study of the influence of vancomycin and cefazolin. J. Arhroplast. 2015, 30, 1423–1429. [Google Scholar] [CrossRef]
Unmodified Bone Cement/BC/ | Antibiotic-Loaded Bone Cement/A-BC/ | Bone Cement Modified with Nanosilver/NpAg-BC/ | |
---|---|---|---|
Powder component [% w/w] | |||
Polymethyl methacrylate | 84.30 | 83.05 | 83.05 |
Barium sulphate | 13.00 | 12.80 | 12.80 |
Benzoyl peroxide | 2.70 | 2.65 | 2.65 |
Gentamicin sulphate | X | 1.5 | X |
Nanosilver | X | X | 1.5 |
Liquid component [% w/w] | |||
Methyl Methacrylate | 99.10 | 99.10 | 99.10 |
N, N-dimethyl-p-toluidine | 0.90 | 0.90 | 0.90 |
Hydroquinone | 75 | 75 | 75 |
Methyl Methacrylate | 99.10 | 99.10 | 99.10 |
Surface Roughness Parameters (µm) | |||||
---|---|---|---|---|---|
Solid Bar/Control A/ | Untreated SLM/Control B/ | Sandblasted SLM | Etched SLM | Ground SLM | |
Ra | 0.14 ± 0.02 # | 10.13 ± 0.20 * | 10.79 ± 0.36 * | 8.82 ± 0.99 *,# | 1.38 ± 0.24 *,# |
Rz | 1.71 ± 0.28 # | 55.95 ± 3.49 * | 54.64 ± 0.79 * | 45.92 ± 5.09 *,# | 7.32 ± 6.90 # |
Rp | 1.30 ± 0.20 # | 28.78 ± 1.89 * | 30.52 ± 0.26 * | 26.00 ± 3.39 *,# | 3.68 ± 0.57 # |
Surface Wettability–the Value of Contact Angle (°) | ||||
---|---|---|---|---|
Solid Bar/Control A/ | Untreated SLM/Control B/ | Sandblasted SLM | Etched SLM | Ground SLM |
76.4 ± 7.1 # | 120.3 ± 2.3 * | 68.3 ± 5.23 # | 81.2 ± 6.6 # | 50.9 ± 4.8 *,# |
Surface Energy (mN/m) | |||||
---|---|---|---|---|---|
Solid Bar/Control A/ | Untreated SLM/Control B/ | Sandblasted SLM | Etched SLM | Ground SLM | |
Ɣs | 41.11 | 48.69 | 51.39 #,* | 38.40 #,* | 67.25 #,* |
ƔsD | 33.84 | 45.07 | 47.27 | 34.71 | 36.94 |
ƔsP | 7.27 | 3.62 | 4.12 | 3.69 | 30.31 |
Solid Bar/Control A/ | Untreated SLM/Control B/ | Sandblasted SLM | Etched SLM | Ground SLM | |
---|---|---|---|---|---|
Nanohardness (GPa) | 5.15 ± 1.12 # | 3.94 ± 1.76 * | 2.43 ± 1.46 *,# | 0.41 ± 0.19 *,# | 6.77 ± 2.14 *,# |
Reduced Young’s modulus(GPa) | 133.50 ± 17.36 # | 62.93 ± 26.30 * | 53.15 ± 24.15 * | 24.00 ± 9.92 *,# | 110.39 ± 20.26 *,# |
H/Er | 0.038 ± 0.004 # | 0.066 ± 0.025 * | 0.052 ± 0.038 | 0.018 ± 0.006 *,# | 0.060 ± 0.009 * |
H3/Er2 (GPa) | 0.008 ± 0.004 # | 0.020 ± 0.017 * | 0.016 ± 0.003 | 0.0002 ± 0.0015 *,# | 0.027 ± 0.015 * |
BC (mN) | A-BC (mN) | NpAg-BC (mN) |
---|---|---|
81.2 ± 19.4 | 84.9 ± 13.8 # | 122.0 ± 11.5 *,# |
Adhesion of Bone Cements to Surface-Modified Titanium (N) | |||||
---|---|---|---|---|---|
Solid Bar/Control A/ | Untreated SLM/Control B/ | Sandblasted SLM | Etched SLM | Ground SLM | |
BC | 86.8 ± 53.1 # | 1432.7 ± 79.5 * | >2000 x,#,* | >2000 x,#,* | 827.9 ± 276.6 *,# |
A-BC | 168.3 ± 92.6 # | 1929.1 ± 18.8 * | >2000 x,* | >2000 x,* | 61.6 ± 46.7 # |
NpAg-BC | 10.0 ± 0.5 y,# | 1980.3 ± 20.3 * | >2000 x,* | >2000 x,* | 69.1 ± 25.6 *,# |
Time (h) | The Bacterial Growth Inhibition Zone (mm) | |||||
---|---|---|---|---|---|---|
BC | A-BC | NpAg-BC | ||||
Stap. aureus | E. coli | Stap. aureus | E. coli | Stap. aureus | E. coli | |
24 | 0 | 0 | 10.2 ± 0.2 *,# | 9.9 ± 0.6 *,# | 1.1 ± 0.2 *,# | 1.0 ± 0.3 *,# |
72 | 0 | 0 | 10.1 ± 0.5 *,# | 9.2 ± 0.5 *,# | 1.1 ± 0.1 *,# | 1.2 ± 0.3 *,# |
168 | 0 | 0 | 10.4 ± 0.4 *,# | 10.5 ± 0.4 *,# | 1.2 ± 0.4 *,# | 1.6 ± 0.5 *,# |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziaduszewska, M.; Wekwejt, M.; Bartmański, M.; Pałubicka, A.; Gajowiec, G.; Seramak, T.; Osyczka, A.M.; Zieliński, A. The Effect of Surface Modification of Ti13Zr13Nb Alloy on Adhesion of Antibiotic and Nanosilver-Loaded Bone Cement Coatings Dedicated for Application as Spacers. Materials 2019, 12, 2964. https://doi.org/10.3390/ma12182964
Dziaduszewska M, Wekwejt M, Bartmański M, Pałubicka A, Gajowiec G, Seramak T, Osyczka AM, Zieliński A. The Effect of Surface Modification of Ti13Zr13Nb Alloy on Adhesion of Antibiotic and Nanosilver-Loaded Bone Cement Coatings Dedicated for Application as Spacers. Materials. 2019; 12(18):2964. https://doi.org/10.3390/ma12182964
Chicago/Turabian StyleDziaduszewska, Magda, Marcin Wekwejt, Michał Bartmański, Anna Pałubicka, Grzegorz Gajowiec, Tomasz Seramak, Anna M. Osyczka, and Andrzej Zieliński. 2019. "The Effect of Surface Modification of Ti13Zr13Nb Alloy on Adhesion of Antibiotic and Nanosilver-Loaded Bone Cement Coatings Dedicated for Application as Spacers" Materials 12, no. 18: 2964. https://doi.org/10.3390/ma12182964
APA StyleDziaduszewska, M., Wekwejt, M., Bartmański, M., Pałubicka, A., Gajowiec, G., Seramak, T., Osyczka, A. M., & Zieliński, A. (2019). The Effect of Surface Modification of Ti13Zr13Nb Alloy on Adhesion of Antibiotic and Nanosilver-Loaded Bone Cement Coatings Dedicated for Application as Spacers. Materials, 12(18), 2964. https://doi.org/10.3390/ma12182964