Surface Roughness Effects on the Broadband Reflection for Refractory Metals and Polar Dielectrics
Abstract
:1. Introduction
2. Computational Methodology
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, M.C.; Ungaro, C.; Foley, J.J.; Gray, S.K. Optical nanostructures design, fabrication, and applications for solar/thermal energy conversion. Sol. Energy 2018, 165, 100–114. [Google Scholar] [CrossRef]
- Inoue, T.; De Zoysa, M.; Asano, T.; Noda, S. Realization of narrowband thermal emission with optical nanostructures. Optica 2015, 2, 27–35. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, C.Y. A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 2013, 104, 538–553. [Google Scholar] [CrossRef]
- Ferrari, C.; Melino, F.; Pinelli, M.; Spina, P.; Venturini, M. Overview and status of thermophotovoltaic systems. Energy Procedia 2014, 45, 160–169. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chattopadhyay, S.; Jen, Y.J.; Peng, C.Y.; Liu, T.A.; Hsu, Y.K.; Pan, C.L.; Lo, H.C.; Hsu, C.H.; Chang, Y.H.; et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nat. Nanotechnol. 2007, 2, 770. [Google Scholar] [CrossRef]
- Fleming, J.; Lin, S.; El-Kady, I.; Biswas, R.; Ho, K. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 2002, 417, 52. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, X. Metamaterials: A new frontier of science and technology. Chem. Soc. Rev. 2011, 40, 2494–2507. [Google Scholar] [CrossRef]
- Zhou, Z.; Sakr, E.; Sun, Y.; Bermel, P. Solar thermophotovoltaics: Reshaping the solar spectrum. Nanophotonics 2016, 5, 1–21. [Google Scholar] [CrossRef]
- Khodasevych, I.E.; Wang, L.; Mitchell, A.; Rosengarten, G. Micro-and nanostructured surfaces for selective solar absorption. Adv. Opt. Mater. 2015, 3, 852–881. [Google Scholar] [CrossRef]
- Oh, J.; Yuan, H.C.; Branz, H.M. An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol. 2012, 7, 743. [Google Scholar] [CrossRef]
- Ungaro, C.; Gray, S.K.; Gupta, M.C. Black tungsten for solar power generation. Appl. Phys. Lett. 2013, 103, 071105. [Google Scholar] [CrossRef]
- Zhang, S.; To, S.; Wang, S.; Zhu, Z. A review of surface roughness generation in ultra-precision machining. Int. J. Mach. Tools Manuf. 2015, 91, 76–95. [Google Scholar] [CrossRef]
- Bagley, J.Q.; Tsang, L.; Ding, K.H.; Ishimaru, A. Optical transmission through a plasmon film lens with small roughness: Enhanced spatial resolution of images of single source and multiple sources. JOSA B 2011, 28, 1766–1777. [Google Scholar] [CrossRef]
- Wang, H.; Bagley, J.Q.; Tsang, L.; Huang, S.; Ding, K.H.; Ishimaru, A. Image enhancement for flat and rough film plasmon superlenses by adding loss. JOSA B 2011, 28, 2499–2509. [Google Scholar] [CrossRef]
- Huang, S.; Wang, H.; Ding, K.H.; Tsang, L. Subwavelength imaging enhancement through a three-dimensional plasmon superlens with rough surface. Opt. Lett. 2012, 37, 1295–1297. [Google Scholar] [CrossRef]
- Lim, J.; Hippalgaonkar, K.; Andrews, S.C.; Majumdar, A.; Yang, P. Quantifying surface roughness effects on phonon transport in silicon nanowires. Nano Lett. 2012, 12, 2475–2482. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Kumar, V.; Tiwari, S.; Mishra, T.; Angula, G.; Adhikari, S. Development and degradation behavior of protective multilayer coatings for aluminum reflectors for solar thermal applications. Thin Solid Films 2016, 619, 202–207. [Google Scholar] [CrossRef]
- Fryauf, D.M.; Phillips, A.C.; Kobayashi, N.P. Corrosion protection of silver-based telescope mirrors using evaporated anti-oxidation overlayers and aluminum oxide films by atomic layer deposition. Proc. SPIE 2016, 9924, 99240S. [Google Scholar]
- Fryauf, D.M.; Phillips, A.C.; Kobayashi, N.P. Corrosion barriers for silver-based telescope mirrors: Comparative study of plasma-enhanced atomic layer deposition and reactive evaporation of aluminum oxide. J. Astron. Telescopes Instrum. Syst. 2015, 1, 044002. [Google Scholar] [CrossRef]
- Rephaeli, E.; Fan, S. Tungsten black absorber for solar light with wide angular operation range. Appl. Phys. Lett. 2008, 92, 211107. [Google Scholar] [CrossRef]
- Chen, Y.B.; Zhang, Z. Design of tungsten complex gratings for thermophotovoltaic radiators. Opt. Commun. 2007, 269, 411–417. [Google Scholar] [CrossRef]
- Keçebaş, M.A.; Şendur, K. Enhancing the spectral reflectance of refractory metals by multilayer optical thin-film coatings. JOSA B 2018, 35, 1845–1853. [Google Scholar] [CrossRef]
- Voronovich, A.G. Wave Scattering from Rough Surfaces; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Beckmann, P.; Spizzichino, A. The Scattering Of Electromagnetic Waves From Rough Surfaces; Artech House: Norwood, MA, USA, 1987. [Google Scholar]
- Ogilvy, J.A. Theory of Wave Scattering From Random Rough Surfaces; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Torrance, K.E.; Sparrow, E.M. Theory for Off-Specular Reflection From Roughened Surfaces. J. Opt. Soc. Am. 1967, 57, 1105–1114. [Google Scholar] [CrossRef]
- Videen, G.; Hsu, J.; Bickel, W.; Wolfe, W. Polarized light scattering from rough surfaces. J. Opt. Soc. Am. 1992, 9, 1111–1118. [Google Scholar] [CrossRef]
- Sinha, S.K.; Sirota, E.B.; Garoff, S.; Stanley, H.B. X-ray and neutron scattering from rough surfaces. Phys. Rev. B 1988, 38, 2297–2311. [Google Scholar] [CrossRef]
- Yueh, S.H.; Kwok, R.; Li, F.; Nghiem, S.; Wilson, W.; Kong, J.A. Polarimetric passive remote sensing of ocean wind vectors. Radio Sci. 1994, 29, 799–814. [Google Scholar] [CrossRef]
- Yueh, H.A.; Shin, R.T.; Kong, J.A. Scattering of electromagnetic waves from a periodic surface with random roughness. J. Appl. Phys. 1988, 64, 1657–1670. [Google Scholar] [CrossRef]
- Yueh, S.H.; Kwok, R. Electromagnetic fluctuations for anisotropic media and the generalized Kirchhoff’s law. Radio Sci. 1993, 28, 471–480. [Google Scholar] [CrossRef]
- Church, E.; Jenkinson, H.; Zavada, J. Relationship between surface scattering and microtopographic features. Opt. Eng. 1979, 18, 182125. [Google Scholar] [CrossRef]
- Hottel, H.C.; Sarofim, A.F. Radiative Transfer; McGraw-Hill: New York, NY, USA, 1967. [Google Scholar]
- Tsang, L.; Kong, J.A.; Shin, R.T. Theory of Microwave Remote Sensing; Wiley-Interscience: New York, NY, USA, 1985. [Google Scholar]
- Johnson, J.T.; Zhang, M. Theoretical study of the small slope approximation for ocean polarimetric thermal emission. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2305–2316. [Google Scholar] [CrossRef]
- Chou, H.T.; Johnson, J.T. A novel acceleration algorithm for the computation of scattering from rough surfaces with the forward-backward method. Radio Sci. 1998, 33, 1277–1287. [Google Scholar] [CrossRef]
- Johnson, J.T. A numerical study of scattering from an object above a rough surface. IEEE Trans. Antennas Propagation 2002, 50, 1361–1367. [Google Scholar] [CrossRef]
- Pino, M.R.; Landesa, L.; Rodriguez, J.L.; Obelleiro, F.; Burkholder, R.J. The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces. IEEE Trans. Antennas Propagation 1999, 47, 961–969. [Google Scholar] [CrossRef]
- Zavorotny, V.U.; Voronovich, A.G. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans. Geosci. Remote Sens. 2000, 38, 951–964. [Google Scholar] [CrossRef] [Green Version]
- Sendur, I.K.; Baertlein, B.A. Numerical simulation of thermal signatures of buried mines over a diurnal cycle. Proc. SPIE 2000, 4038, 156–167. [Google Scholar]
- Sendur, I.K.; Johnson, J.T.; Baertlein, B.A. Analysis of polarimetric IR phenomena for detection of surface mines. Proc. SPIE 2001, 4394, 153–163. [Google Scholar]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Schmugge, T.J.; Chang, A.; Newton, R.W. Effect of surface roughness on the microwave emission from soils. J. Geophys. Res.: Oceans 1979, 84, 5699–5706. [Google Scholar] [CrossRef]
- Zheng, L.; Ma, Y.; Chu, S.; Wang, S.; Qu, B.; Xiao, L.; Chen, Z.; Gong, Q.; Wu, Z.; Hou, X. Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition. Nanoscale 2014, 6, 8171–8176. [Google Scholar] [CrossRef]
- Faÿ, S.; Feitknecht, L.; Schlüchter, R.; Kroll, U.; Vallat-Sauvain, E.; Shah, A. Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells. Sol. Energy Mater. Solar Cells 2006, 90, 2960–2967. [Google Scholar] [CrossRef] [Green Version]
- Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Hoffmann, A.; Lenkefi, Z.; Szentirmay, Z. Effect of roughness on surface plasmon scattering in gold films. J. Phys.: Condensed Matter 1998, 10, 5503–5513. [Google Scholar] [CrossRef]
- Kanso, M.; Cuenot, S.; Louarn, G. Roughness effect on the SPR measurements for an optical fibre configuration: Experimental and numerical approaches. J. Opt. A: Pure Appl. Opt. 2007, 9, 586–592. [Google Scholar] [CrossRef]
- Farias, G.A.; Maradudin, A.A. Surface plasmons on a randomly rough surface. Phys. Rev. B 1983, 28, 5675–5687. [Google Scholar] [CrossRef]
- Maradudin, A.A.; Mills, D.L. Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness. Phys. Rev. B 1975, 11, 1392–1415. [Google Scholar] [CrossRef]
- Celli, V.; Maradudin, A.A.; Marvin, A.M.; McGurn, A.R. Some aspects of light scattering from a randomly rough metal surface. J. Opt. Soc. Am. A 1985, 2, 2225–2239. [Google Scholar] [CrossRef]
- Simonsen, I.; Maradudin, A.A. Numerical simulation of electromagnetic wave scattering from planar dielectric films deposited on rough perfectly conducting substrates. Opt. Commun. 1999, 162, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, T.D.; Junge, T.; Pastewka, L. Quantitative characterization of surface topography using spectral analysis. Surface Topography: Metrol. Proper. 2017, 5, 013001. [Google Scholar] [CrossRef]
- Tsang, L.; Ding, K.H.; Li, X.; Duvelle, P.N.; Vella, J.H.; Goldsmith, J.; Devlin, C.L.; Limberopoulos, N.I. Studies of the influence of deep subwavelength surface roughness on fields of plasmonic thin film based on Lippmann–Schwinger equation in the spectral domain. JOSA B 2015, 32, 878–891. [Google Scholar] [CrossRef]
- Sadiku, M.N. Numerical Techniques in Electromagnetics; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Canteli, D.; López, J.; Lauzurica, S.; Lluscà, M.; Sánchez-Aniorte, M.; Bertomeu, J.; Morales, M.; Molpeceres, C. Analysis by Finite Element Calculations of Light Scattering in Laser-textured AZO Films for PV thin-film Solar Cells. Energy Procedia 2015, 84, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Delacrétaz, Y.; Seydoux, O.; Chamot, S.; Ettemeyer, A.; Depeursinge, C. Monte Carlo simulation of the field back-scattered from rough surfaces. J. Opt. Soc. Am. A 2012, 29, 270–277. [Google Scholar] [CrossRef]
- Wang, T.; Tsang, L.; Johnson, J.T.; Tan, S. Scattering and transmission of waves in multiple random rough surfaces: Energy conservation studies with the second order small perturbation method. Progress Electromagn. Res. 2016, 157, 1–20. [Google Scholar] [CrossRef]
- Caldwell, J.D.; Lindsay, L.; Giannini, V.; Vurgaftman, I.; Reinecke, T.L.; Maier, S.A.; Glembocki, O.J. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 2015, 4, 44–68. [Google Scholar] [CrossRef] [Green Version]
- Bennett, H.; Porteus, J. Relation between surface roughness and specular reflectance at normal incidence. JOSA 1961, 51, 123–129. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Sendur, K. Surface Roughness Effects on the Broadband Reflection for Refractory Metals and Polar Dielectrics. Materials 2019, 12, 3090. https://doi.org/10.3390/ma12193090
Cao L, Sendur K. Surface Roughness Effects on the Broadband Reflection for Refractory Metals and Polar Dielectrics. Materials. 2019; 12(19):3090. https://doi.org/10.3390/ma12193090
Chicago/Turabian StyleCao, Lina, and Kursat Sendur. 2019. "Surface Roughness Effects on the Broadband Reflection for Refractory Metals and Polar Dielectrics" Materials 12, no. 19: 3090. https://doi.org/10.3390/ma12193090
APA StyleCao, L., & Sendur, K. (2019). Surface Roughness Effects on the Broadband Reflection for Refractory Metals and Polar Dielectrics. Materials, 12(19), 3090. https://doi.org/10.3390/ma12193090