Simulation of Wrinkling during Bending of Composite Reinforcement Laminates
Abstract
:1. Introduction
2. Presentation of Experimental Analyses
3. Stress Resultant Shell Approach
4. Symmetrical Bending with Clamped Ends
5. L-Flange Forming
6. Bending after Buckling
7. Remarks and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Luca, P.; Lefébure, P.; Pickett, A.K. Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX. Compos. Part A Appl. Sci. Manuf. 1998, 29, 101–110. [Google Scholar] [CrossRef]
- Hancock, S.G.; Potter, K.D. The use of kinematic drape modelling to inform the hand lay-up of complex composite components using woven reinforcements. Compos. Part A Appl. Sci. Manuf. 2006, 37, 413–422. [Google Scholar] [CrossRef]
- Skordos, A.A.; Aceves, C.M.; Sutcliffe, M.P. A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1318–1330. [Google Scholar] [CrossRef] [Green Version]
- Ten Thije, R.H.W.; Akkerman, R. A multi-layer triangular membrane finite element for the forming simulation of laminated composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 739–753. [Google Scholar] [CrossRef]
- Hamila, N.; Boisse, P.; Sabourin, F.; Brunet, M. A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int. J. Numer. Methods Eng. 2009, 79, 1443–1466. [Google Scholar] [CrossRef]
- Harrison, P.; Yu, W.R.; Long, A.C. Rate dependent modelling of the forming behaviour of viscous textile composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1719–1726. [Google Scholar] [CrossRef]
- Mitchell, C.J.; Dangora, L.M.; Sherwood, J.A. Investigation into a robust finite element model for composite materials. Finite Elem. Anal. Des. 2016, 115, 1–8. [Google Scholar] [CrossRef]
- Daelemans, L.; Faes, J.; Allaoui, S.; Hivet, G.; Dierick, M.; Van Hoorebeke, L.; Van Paepegem, W. Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method. Compos. Sci. Technol. 2016, 137, 177–187. [Google Scholar] [CrossRef]
- Mallach, A.; Härtel, F.; Heieck, F.; Fuhr, J.P.; Middendorf, P.; Gude, M. Experimental comparison of a macroscopic draping simulation for dry non-crimp fabric preforming on a complex geometry by means of optical measurement. J. Compos. Mater. 2017, 51, 2363–2375. [Google Scholar] [CrossRef]
- Thompson, A.J.; El Said, B.; Belnoue, J.P.; Hallett, S.R. Modelling process induced deformations in 0/90 non-crimp fabrics at the meso-scale. Compos. Sci. Technol. 2018, 168, 104–110. [Google Scholar] [CrossRef]
- Kärger, L.; Galkin, S.; Zimmerling, C.; Dörr, D.; Linden, J.; Oeckerath, A.; Wolf, K. Forming optimisation embedded in a CAE chain to assess and enhance the structural performance of composite components. Compos. Struct. 2018, 192, 143–152. [Google Scholar] [CrossRef]
- Bickerton, S.; Šimáček, P.; Guglielmi, S.E.; Advani, S.G. Investigation of draping and its effects on the mold filling process during manufacturing of a compound curved composite part. Compos. Part A Appl. Sci. Manuf. 1997, 28, 801–816. [Google Scholar] [CrossRef]
- Hubert, P.; Vaziri, R.; Poursartip, A. A two-dimensional flow model for the process simulation of complex shape composite laminates. Int. J. Numer. Methods Eng. 1999, 44, 1–26. [Google Scholar] [CrossRef]
- Correia, N.C.; Robitaille, F.; Long, A.C.; Rudd, C.D.; Šimáček, P.; Advani, S.G. Analysis of the vacuum infusion moulding process: I. Analytical formulation. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1645–1656. [Google Scholar] [CrossRef]
- Guiraud, O.; Dumont, P.J.; Orgéas, L.; Vassal, J.P.; Le, T.H.; Favier, D. Towards the simulation of mould filling with polymer composites reinforced with mineral fillers and short fibres. Int. J. Mater. Form. 2010, 3, 1313–1326. [Google Scholar] [CrossRef]
- Park, C.H.; Lebel, A.; Saouab, A.; Bréard, J.; Lee, W.I. Modeling and simulation of voids and saturation in liquid composite molding processes. Compos. Part A Appl. Sci. Manuf. 2011, 42, 658–668. [Google Scholar] [CrossRef]
- Zeng, X.; Brown, L.P.; Endruweit, A.; Matveev, M.; Long, A.C. Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties. Compos. A Appl. Sci. Manuf. 2014, 56, 150–160. [Google Scholar] [CrossRef]
- Ghnatios, C.; Abisset-Chavanne, E.; Binetruy, C.; Chinesta, F.; Advani, S. 3D modeling of squeeze flow of multiaxial laminates. J. Non Newton. Fluid Mech. 2016, 234, 188–200. [Google Scholar] [CrossRef]
- Blais, M.; Moulin, N.; Liotier, P.J.; Drapier, S. Resin infusion-based processes simulation: Coupled Stokes-Darcy flows in orthotropic preforms undergoing finite strain. Int. J. Mater. Form. 2017, 10, 43–54. [Google Scholar] [CrossRef]
- Vanclooster, K.; Lomov, S.V.; Verpoest, I. On the formability of multi-layered fabric composites. In Proceedings of the 17th International Conference of Composite Materials, Edinburgh, UK, 27–31 July 2009; pp. 1–10. [Google Scholar]
- Vanclooster, K.; Lomov, S.V.; Verpoest, I. Simulation of multi-layered composites forming. Int. J. Mater. Form. 2010, 3, 695–698. [Google Scholar] [CrossRef]
- Allaoui, S.; Cellard, C.; Hivet, G. Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms. Compos. Part A Appl. Sci. Manuf. 2015, 68, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Akkerman, R.; Haanappel, S.P. Thermoplastic Composites Manufacturing by Thermoforming. In Advances in Composites Manufacturing and Process Design; Woodhead Publishing: Sawston, UK, 2005; pp. 111–129. [Google Scholar]
- Nezami, F.N.; Gereke, T.; Cherif, C. Analyses of interaction mechanisms during forming of multilayer carbon woven fabrics for composite applications. Compos. Part A Appl. Sci. Manuf. 2016, 84, 406–416. [Google Scholar] [CrossRef]
- Leutz, D.; Vermilyea, M.; Bel, S.; Hinterhölzl, R. Forming simulation of thick AFP laminates and comparison with live CT imaging. Appl. Compos. Mater. 2016, 23, 583–600. [Google Scholar] [CrossRef]
- Alshahrani, H.; Hojjati, M. Bending behavior of multilayered textile composite prepregs: Experiment and finite element modeling. Mater. Des. 2017, 124, 211–224. [Google Scholar] [CrossRef]
- Potter, K.; Khan, B.; Wisnom, M.; Bell, T.; Stevens, J. Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1343–1354. [Google Scholar] [CrossRef]
- Lightfoot, J.S.; Wisnom, M.R.; Potter, K. A new mechanism for the formation of ply wrinkles due to shear between plies. Compos. Part A Appl. Sci. Manuf. 2013, 49, 139–147. [Google Scholar] [CrossRef]
- Lightfoot, J.S.; Wisnom, M.R.; Potter, K. Defects in woven preforms: Formation mechanisms and the effects of laminate design and layup protocol. Compos. Part A Appl. Sci. Manuf. 2013, 51, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Hallander, P.; Akermo, M.; Mattei, C.; Petersson, M.; Nyman, T. An experimental study of mechanisms behind wrinkle development during forming of composite laminates. Compos. Part A Appl. Sci. Manuf. 2013, 50, 54–64. [Google Scholar] [CrossRef]
- Hallander, P.; Sjölander, J.; Åkermo, M. Forming induced wrinkling of composite laminates with mixed ply material properties; an experimental study. Compos. Part A Appl. Sci. Manuf. 2015, 78, 234–245. [Google Scholar] [CrossRef]
- Sjölander, J.; Hallander, P.; Åkermo, M. Forming induced wrinkling of composite laminates: A numerical study on wrinkling mechanisms. Compos. Part A Appl. Sci. Manuf. 2016, 81, 41–51. [Google Scholar] [CrossRef]
- Hubert, P.; Poursartip, A. Aspects of the compaction of composite angle laminates: An experimental investigation. J. Compos. Mater. 2001, 35, 2–26. [Google Scholar] [CrossRef]
- Farnand, K.; Zobeiry, N.; Poursartip, A.; Fernlund, G. Micro-level mechanisms of fiber waviness and wrinkling during hot drape forming of unidirectional prepreg composites. Compos. Part A Appl. Sci. Manuf. 2017, 103, 168–177. [Google Scholar] [CrossRef]
- Belnoue, J.H.; Nixon-Pearson, O.J.; Thompson, A.J.; Ivanov, D.S.; Potter, K.D.; Hallett, S.R. Consolidation-driven defect generation in thick composite parts. J. Manuf. Sci. Eng. 2018, 140. [Google Scholar] [CrossRef] [Green Version]
- Belnoue, J.H.; Nixon-Pearson, O.J.; Ivanov, D.; Hallett, S.R. A novel hyper-viscoelastic model for consolidation of toughened prepregs under processing conditions. Mech. Mater. 2016, 97, 118–134. [Google Scholar] [CrossRef] [Green Version]
- Dodwell, T.J.; Butler, R.; Hunt, G.W. Out-of-plane ply wrinkling defects during consolidation over an external radius. Compos. Sci. Technol. 2014, 105, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Dodwell, T.J. Internal wrinkling instabilities in layered media. Philos. Mag. 2015, 95, 3225–3243. [Google Scholar] [CrossRef]
- Beex, L.A.A.; Peerlings, R.H.J. An experimental and computational study of laminated paperboard creasing and folding. Int. J. Solids Struct. 2009, 46, 4192–4207. [Google Scholar] [CrossRef] [Green Version]
- Beex, L.A.; Peerlings, R.H. On the influence of delamination on laminated paperboard creasing and folding. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 1912–1924. [Google Scholar] [CrossRef]
- Rutter, E.H. Experimental rock deformation: Techniques, results and applications to tectonics. Geol. Today 1993, 9, 61–65. [Google Scholar] [CrossRef]
- Whiting, A.I.M.; Hunt, G.W. Evolution of nonperiodic forms in geological folds. Math. Geol. 1997, 29, 705–723. [Google Scholar] [CrossRef]
- Schmid, D.W.; Schmalholz, S.M.; Mancktelow, N.S.; Fletcher, R.C. Comment on Folding with thermal-mechanical feedback. J. Struct. Geol. 2010, 32, 127–130. [Google Scholar] [CrossRef]
- Nagasawa, S.; Fukuzawa, Y.; Yamaguchi, T.; Tsukatani, S.; Katayama, I. Effect of crease depth and crease deviation on folding deformation characteristics of coated paperboard. J. Mater. Process. Technol. 2003, 140, 157–162. [Google Scholar] [CrossRef]
- Hunt, G.; Butler, R.; Budd, C. Geometry and mechanics of layered structures and materials. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 1723–1729. [Google Scholar] [CrossRef]
- Mullineux, G.; Hicks, B.J.; Berry, C. Numerical optimization approach to modelling delamination and buckling of geometrically constrained structures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 1925–1941. [Google Scholar] [CrossRef] [Green Version]
- Coffin, D.W.; Nygårds, M. Creasing and folding. In Proceedings of the 16th Fundamental Research Symposium, Oxford, UK, 3–8 September 2017; pp. 69–136. [Google Scholar]
- Nosrat-Nezami, F.; Gereke, T.; Eberdt, C.; Cherif, C. Characterisation of the shear–tension coupling of carbon-fibre fabric under controlled membrane tensions for precise simulative predictions of industrial preforming processes. Compos. Part A Appl. Sci. Manuf. 2014, 67, 131–139. [Google Scholar] [CrossRef]
- Mitchell, C.; Dangora, L.; Bielmeier, C.; Sherwood, J. Investigation into the changes in bending stiffness of a textile reinforced composite due to in-plane fabric shear: Part 2—Numerical analysis. Compos. Part A Appl. Sci. Manuf. 2016, 85, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Kashani, M.H.; Rashidi, A.; Crawford, B.J.; Milani, A.S. Analysis of a two-way tension-shear coupling in woven fabrics under combined loading tests: Global to local transformation of non-orthogonal normalized forces and displacements. Compos. Part A Appl. Sci. Manuf. 2016, 88, 272–285. [Google Scholar] [CrossRef]
- Yao, Y.; Peng, X.; Gong, Y. Influence of tension–shear coupling on draping of plain weave fabrics. J. Mater. Sci. 2019, 54, 6310–6322. [Google Scholar] [CrossRef]
- Alshahrani, H. Characterization and finite element modeling of coupled properties during polymer composites forming processes. Mech. Mater. 2020, 144, 103370. [Google Scholar] [CrossRef]
- Zouari, B.; Daniel, J.L.; Boisse, P. A woven reinforcement forming simulation method. Influence of the shear stiffness. Comput. Struct. 2006, 84, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Hamila, N.; Boisse, P. A meso–macro three node finite element for draping of textile composite preforms. Appl. Compos. Mater. 2007, 14, 235–250. [Google Scholar] [CrossRef]
- Yu, W.R.; Zampaloni, M.; Pourboghrat, F.; Chung, K.; Kang, T.J. Analysis of flexible bending behavior of woven preform using non-orthogonal constitutive equation. Compos. Part A Appl. Sci. Manuf. 2005, 36, 839–850. [Google Scholar] [CrossRef]
- Döbrich, O.; Gereke, T.; Diestel, O.; Krzywinski, S.; Cherif, C. Decoupling the bending behavior and the membrane properties of finite shell elements for a correct description of the mechanical behavior of textiles with a laminate formulation. J. Ind. Text. 2014, 44, 70–84. [Google Scholar] [CrossRef]
- Liang, B.; Colmars, J.; Boisse, P. A shell formulation for fibrous reinforcement forming simulations. Compos. Part A Appl. Sci. Manuf. 2017, 100, 81–96. [Google Scholar] [CrossRef]
- Iwata, A.; Inoue, T.; Naouar, N.; Boisse, P.; Lomov, S.V. Coupled meso-macro simulation of woven fabric local deformation during draping. Compos. Part A Appl. Sci. Manuf. 2019, 118, 267–280. [Google Scholar] [CrossRef]
- Dörr, D.; Joppich, T.; Kugele, D.; Henning, F.; Kärger, L. A coupled thermomechanical approach for finite element forming simulation of continuously fiber-reinforced semi-crystalline thermoplastics. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105508. [Google Scholar] [CrossRef]
- Boisse, P.; Hamila, N.; Vidal-Sallé, E.; Dumont, F. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Compos. Sci. Technol. 2011, 71, 683–692. [Google Scholar] [CrossRef] [Green Version]
- Boisse, P.; Colmars, J.; Hamila, N.; Naouar, N.; Steer, Q. Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations. Compos. B Eng. 2018, 141, 234–249. [Google Scholar] [CrossRef]
- Lebrun, G.; Bureau, M.N.; Denault, J. Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos. Struct. 2003, 61, 341–352. [Google Scholar] [CrossRef]
- Cao, J.; Akkerman, R.; Boisse, P.; Chen, J.; Cheng, H.S.; De Graaf, E.F.; Lee, W. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1037–1053. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Yu, T.X.; Teng, J.; Tao, X.M. Theoretical modeling of large shear deformation and wrinkling of plain woven composite. J. Compos. Mater. 2009, 43, 125–138. [Google Scholar] [CrossRef]
- Boisse, P.; Hamila, N.; Guzman-Maldonado, E.; Madeo, A.; Hivet, G.; Dell’Isola, F. The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: A review. Int. J. Mater. Form. 2017, 10, 473–492. [Google Scholar] [CrossRef]
- Lomov, S.V.; Verpoest, I.; Barburski, M.; Laperre, J. Carbon composites based on multiaxial multiply stitched preforms. Part 2. KES-F characterisation of the deformability of the preforms at low loads. Compos. Part A Appl. Sci. Manuf. 2003, 34, 359–370. [Google Scholar] [CrossRef]
- Merhi, D.; Michaud, V.; Comte, E.; Månson, J.A.E. Predicting sizing dependent bending rigidity of glass fibre bundles in sheet moulding compounds. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1773–1786. [Google Scholar] [CrossRef]
- De Bilbao, E.; Soulat, D.; Hivet, G.; Gasser, A. Experimental study of bending behaviour of reinforcements. Exp. Mech. 2010, 50, 333–351. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, S.; Niwa, M.; Kawai, H. 3—The finite-deformation theory of plain-weave fabrics part I: The biaxial-deformation theory. J. Text. Inst. 1973, 64, 21–46. [Google Scholar] [CrossRef]
- Buet-Gautier, K.; Boisse, P. Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements. Exp. Mech. 2001, 41, 260–269. [Google Scholar] [CrossRef]
- Carvelli, V.; Corazza, C.; Poggi, C. Mechanical modelling of monofilament technical textiles. Comput. Mater. Sci. 2008, 42, 679–691. [Google Scholar] [CrossRef]
- Willems, A.; Lomov, S.V.; Verpoest, I.; Vandepitte, D. Optical strain fields in shear and tensile testing of textile reinforcements. Compos. Sci. Technol. 2008, 68, 807–819. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.T.; Vidal-Sallé, E.; Boisse, P.; Park, C.H.; Saouab, A.; Bréard, J.; Hivet, G. Mesoscopic scale analyses of textile composite reinforcement compaction. Compos. B Eng. 2013, 44, 231–241. [Google Scholar] [CrossRef]
- Wijaya, W.; Ali, M.A.; Umer, R.; Khan, K.A.; Kelly, P.A.; Bickerton, S. An automatic methodology to CT-scans of 2D woven textile fabrics to structured finite element and voxel meshes. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105561. [Google Scholar] [CrossRef]
- Xiong, H.; Hamila, N.; Boisse, P. Consolidation Modeling during Thermoforming of Thermoplastic Composite Prepregs. Materials 2019, 12, 2853. [Google Scholar] [CrossRef] [Green Version]
- Hivet, G.; Duong, A.V. A contribution to the analysis of the intrinsic shear behavior of fabrics. J. Compos. Mater. 2011, 45, 695–716. [Google Scholar] [CrossRef]
- Allaoui, S.; Boisse, P.; Chatel, S.; Hamila, N.; Hivet, G.; Soulat, D.; Vidal-Salle, E. Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Compos. Part A Appl. Sci. Manuf. 2011, 42, 612–622. [Google Scholar] [CrossRef]
- Wendling, A.; Daniel, J.L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P. Meshing preprocessor for the Mesoscopic 3D finite element simulation of 2D and interlock fabric deformation. Appl. Compos. Mater. 2015, 22, 869–886. [Google Scholar] [CrossRef]
- Gherissi, A.; Abbassi, F.; Ammar, A.; Zghal, A. Numerical and experimental investigations on deep drawing of G1151 carbon fiber woven composites. Appl. Compos. Mater. 2016, 23, 461–476. [Google Scholar] [CrossRef]
- ITOOL: Integrated Tool for Simulation of Textile Composites. Available online: https://cordis.europa.eu/project/id/516146/fr (accessed on 12 May 2020).
- Onate, E.; Zárate, F. Rotation-free triangular plate and shell elements. Int. J. Numer. Methods Eng. 2000, 47, 557–603. [Google Scholar] [CrossRef]
- Sabourin, F.; Brunet, M. Detailed formulation of the rotation-free triangular element “S3” for general purpose shell analysis. Eng. Comput. 2006. [Google Scholar] [CrossRef]
- Madeo, A.; Ferretti, M.; Dell’Isola, F.; Boisse, P. Thick fibrous composite reinforcements behave as special second-gradient materials: Three-point bending of 3D interlocks. Z. Angew. Math. Phys. 2015, 66, 2041–2060. [Google Scholar] [CrossRef] [Green Version]
- Wiersma, H.W.; Peeters, L.J.B.; Akkerman, R. Prediction of springforward in continuous-fibre/polymer L-shaped parts. Compos. Part A Appl. Sci. Manuf. 1998, 29, 1333–1342. [Google Scholar] [CrossRef]
- Kappel, E.; Stefaniak, D.; Hühne, C. Process distortions in prepreg manufacturing–an experimental study on CFRP L-profiles. Compos. Struct. 2013, 106, 615–625. [Google Scholar] [CrossRef]
- Takagaki, K.; Minakuchi, S.; Takeda, N. Process-induced strain and distortion in curved composites. Part II: Parametric study and application. Compos. Part A Appl. Sci. Manuf. 2017, 103, 219–229. [Google Scholar] [CrossRef]
- Hörberg, E.; Nyman, T.; Åkermo, M.; Hallström, S. Thickness effect on spring-in of prepreg composite L-profiles–An experimental study. Compos. Struct. 2019, 209, 499–507. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Ni, A.; Hu, H.; Ding, A.; Li, S. Process-induced deformation of L-shaped variable-stiffness composite structures during cure. Compos. Struct. 2019, 230, 111461. [Google Scholar] [CrossRef]
Tensile stiffness in warp and weft direction: | |
In-plane shear stiffness: | |
Bending stiffness in warp and weft direction: | |
Coefficient of friction between plies: Thickness of a ply | μ = 0.21 e = 1.3 mm |
Simulation | Number of Layers | Number of Elements per Layer | Number of Nodes per Layer | Number of Degree of Freedom per Layer | Total Number of Degree of Freedom |
---|---|---|---|---|---|
Stack of G1151 layers | 10 | 48 | 50 | 150 | 1500 |
Stack of paper layers | 100 | 96 | 98 | 294 | 29,400 |
Young’s modulus E: | 4.61 GPa |
Shear modulus G | 1.92 GPa |
Coefficient of friction between plies: | |
Thickness of a ply | e = 0.1 mm |
Test 1 | Test 2 | Test 3 | |
---|---|---|---|
Experiment hAA′ | 44.6 | 46.2 | 45.3 |
Figure 12b | Figure 12c | Figure 13b | Figure 13c | |
---|---|---|---|---|
Experiment B | (78.5, 27.4) | (73.1, 31.6) | (93.4, 20.5) | (90.9, 31.9) |
Simulation B | (78.2, 26.3) | (75.1, 30.1) | (88.9, 22.9) | (83.0, 31.0) |
Experiment hBB′ | 27.4 | 31.6 | 20.5 | 31.9 |
Simulation hBB′ | 26.3 | 30.1 | 22.9 | 31.0 |
Position C | Position D | Position E | Position F | hCD | hEF | |
---|---|---|---|---|---|---|
Experiment | (−32.4, 50.8) | (−51.8, 33.7) | (28.1, 54.6) | (50.8, 33.8) | 26.2 | 31.3 |
Simulation | (−30.2, 50.0) | (−51.0, 33.3) | (30.8, 52.0) | (50.4, 33.4) | 27.0 | 26.4 |
Position G | Position H | hGH | |
---|---|---|---|
Experiment | (49.9, 48.6) | (62.3, 24.4) | 28.5 |
Simulation | (52.9, 50.3) | (66.2, 27.6) | 26.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Boisse, P.; Hamila, N.; Zhu, Y. Simulation of Wrinkling during Bending of Composite Reinforcement Laminates. Materials 2020, 13, 2374. https://doi.org/10.3390/ma13102374
Huang J, Boisse P, Hamila N, Zhu Y. Simulation of Wrinkling during Bending of Composite Reinforcement Laminates. Materials. 2020; 13(10):2374. https://doi.org/10.3390/ma13102374
Chicago/Turabian StyleHuang, Jin, Philippe Boisse, Nahiène Hamila, and Yingdan Zhu. 2020. "Simulation of Wrinkling during Bending of Composite Reinforcement Laminates" Materials 13, no. 10: 2374. https://doi.org/10.3390/ma13102374
APA StyleHuang, J., Boisse, P., Hamila, N., & Zhu, Y. (2020). Simulation of Wrinkling during Bending of Composite Reinforcement Laminates. Materials, 13(10), 2374. https://doi.org/10.3390/ma13102374