Polypropylene as a Retrofitting Material for Shear Walls
Abstract
:1. Introduction
2. Polypropylene in Conservation Engineering
3. Tests Using Polypropylene Fibers
3.1. Masonry
3.2. Test Method
3.3. Test Results and Discussion
4. Tests Using Polypropylene Nets
5. Conclusions
- The use of polypropylene fibers, embedded into a cementitious matrix to reinforce brickwork walls was ultimately effective. The maximum increase in the in-plane load capacity was achieved when two jacket coatings were used as a retrofitting method: for the half-scale and full-scale panels, the shear capacity increases were 317% and 263%, respectively, compared to the unreinforced wall panels.
- The repair of cracked wall panels with polypropylene nets was ineffective. For both the brick and stonework shear walls, the strength and ductility of the repaired wall panels did not increase after repair. This was likely the consequence of the low Young’s modulus of the polypropylene net and its low bonding properties. The PN-reinforced mortar jacket detached from the masonry substrate during shear loading.
- Both the URM and polypropylene-retrofitted wall panels showed distinct bi-linear behavior for low and high in-plane loads, and the slope of the second linear part of the curve only depended on the loading procedure and the progressive development of the shear cracks, and not on the effect of the polypropylene reinforcement or repair. The stress–strain response of the retrofitted walls was similar to that of URM walls and lacked any distinct post-peak strain-hardening behavior.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carocci, C.F. Small centres damaged by 2009 L’Aquila earthquake: On site analyses of historical masonry aggregates. Bull. Earthq. Eng. 2012, 10, 45–71. [Google Scholar] [CrossRef]
- Sorrentino, L.; Cattari, S.; da Porto, F.; Magenes, G.; Penna, A. Seismic behaviour of ordinary masonry buildings during the 2016 central Italy earthquakes. Bull. Earthq. Eng. 2018, 17, 5583–5607. [Google Scholar] [CrossRef] [Green Version]
- Ural, A.; Doğangün, A.; Sezen, H.; Angın, Z. Seismic performance of masonry buildings during the 2007 Bala, Turkey earthquakes. Nat. Hazards 2012, 60, 1013–1026. [Google Scholar] [CrossRef]
- Karababa, F.S.; Pomonis, A. Damage data analysis and vulnerability estimation following the August 14, 2003 Lefkada Island, Greece, Earthquake. Bull. Earthq. Eng. 2011, 9, 1015–1046. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M. Architectural Heritage: A discussion on conservation and safety. Heritage 2019, 2, 41. [Google Scholar] [CrossRef] [Green Version]
- Borri, A.; Corradi, M.; Castori, G.; Sisti, R.; De Maria, A. Analysis of the collapse mechanisms of medieval churches struck by the 2016 Umbrian earthquake. Int. J. Archit. Herit. 2019, 13, 215–228. [Google Scholar] [CrossRef]
- Shawa, O.A.; de Felice, G.; Mauro, A.; Sorrentino, L. Out-of-plane seismic behaviour of rocking masonry walls. Earthq. Eng. Struct. Dyn. 2012, 41, 949–968. [Google Scholar] [CrossRef]
- Ferreira, T.M.; Costa, A.A.; Costa, A. Analysis of the out-of-plane seismic behavior of unreinforced masonry: A literature review. Int. J. Archit. Herit. 2015, 9, 949–972. [Google Scholar] [CrossRef]
- Sisti, R.; Corradi, M.; Borri, A. An experimental study on the influence of composite materials used to reinforce masonry ring beams. Constr. Build. Mater. 2016, 122, 231–241. [Google Scholar] [CrossRef]
- De Santis, S.; Casadei, P.; De Canio, G.; de Felice, G.; Malena, M.; Mongelli, M.; Roselli, I. Seismic performance of masonry walls retrofitted with steel reinforced grout. Earthq. Eng. Struct. Dyn. 2016, 45, 229–251. [Google Scholar] [CrossRef]
- Darbhanzi, A.; Marefat, M.S.; Khanmohammadi, M. Investigation of in-plane seismic retrofit of unreinforced masonry walls by means of vertical steel ties. Constr. Build. Mater. 2014, 52, 122–129. [Google Scholar] [CrossRef]
- Pinho, F.F.; Lúcio, V.J.; Baião, M.F. Rubble stone masonry walls strengthened by three-dimensional steel ties and textile-reinforced mortar render, under compression and shear loads. Int. J. Archit. Herit. 2015, 9, 844–858. [Google Scholar] [CrossRef]
- Rahman, A.; Ueda, T. In-plane shear performance of masonry walls after strengthening by two different FRPs. J. Compos. Constr. 2016, 20, 04016019. [Google Scholar] [CrossRef] [Green Version]
- Willis, C.R.; Seracino, R.; Griffith, M.C. Out-of-plane strength of brick masonry retrofitted with horizontal NSM CFRP strips. Eng. Struct. 2010, 32, 547–555. [Google Scholar] [CrossRef]
- Capozucca, R. Experimental analysis of historic masonry walls reinforced by CFRP under in-plane cyclic loading. Compos. Struct. 2011, 94, 277–289. [Google Scholar] [CrossRef]
- Triantafillou, T.C. Strengthening of masonry structures using epoxy-bonded FRP laminates. J. Compos. Constr. 1998, 2, 96–104. [Google Scholar] [CrossRef]
- Mahmood, H.; Ingham, J.M. Diagonal compression testing of FRP-retrofitted unreinforced clay brick masonry wallettes. J. Compos. Constr. 2011, 15, 810–820. [Google Scholar] [CrossRef] [Green Version]
- Valluzzi, M.R.; Tinazzi, D.; Modena, C. Shear behavior of masonry panels strengthened by FRP laminates. Constr. Build. Mater. 2002, 16, 409–416. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M.; Vignoli, A. Seismic upgrading of masonry structures with FRP. In Proceedings of the 7th International Conference on Inspection Appraisal Repairs and Maintenance of Buildings and Structures, Nottingham, UK, 11–13 September 2001. [Google Scholar]
- Corradi, M.; Borri, A.; Vignoli, A. Strengthening techniques tested on masonry structures struck by the Umbria–Marche earthquake of 1997–1998. Constr. Build. Mater. 2002, 16, 229–239. [Google Scholar] [CrossRef]
- Wei, C.Q.; Zhou, X.G.; Ye, L.P. Experimental study of masonry walls strengthened with CFRP. Struct. Eng. Mech. 2007, 25, 675–690. [Google Scholar] [CrossRef]
- Micelli, F.; Ombres, L. Natural masonry strengthened with CFRP: Experiments and modelling on wall panels. In Proceedings of the International Conference Composite in Constructions-CCC2003, Cosenza, Italy, 16–19 September 2003. [Google Scholar]
- Tedeschi, C.; Kwiecień, A.; Valluzzi, M.R.; Zając, B.; Garbin, E.; Binda, L. Effect of thermal ageing and salt decay on bond between FRP and masonry. Mater. Struct. 2014, 47, 2051–2065. [Google Scholar] [CrossRef]
- Ghiassi, B.; Oliveira, D.V.; Lourenço, P.B. Hygrothermal durability of bond in FRP-strengthened masonry. Mater. Struct. 2014, 47, 2039–2050. [Google Scholar] [CrossRef] [Green Version]
- Bernat, E.; Gil, L.; Roca, P.; Escrig, C. Experimental and analytical study of TRM strengthened brickwork walls under eccentric compressive loading. Constr. Build. Mater. 2013, 44, 35–47. [Google Scholar] [CrossRef]
- Kouris, L.A.S.; Triantafillou, T.C. State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM). Constr. Build. Mater. 2018, 188, 1221–1233. [Google Scholar] [CrossRef]
- Shabdin, M.; Zargaran, M.; Attari, N.K. Experimental diagonal tension (shear) test of Un-Reinforced Masonry (URM) walls strengthened with textile reinforced mortar (TRM). Constr. Build. Mater. 2018, 164, 704–715. [Google Scholar] [CrossRef]
- Ismail, N.; Ingham, J.M. In-plane and out-of-plane testing of unreinforced masonry walls strengthened using polymer textile reinforced mortar. Eng. Struct. 2016, 118, 167–177. [Google Scholar] [CrossRef]
- Ramonda, L.G.; Pelá, L.; Roca, P.; Camata, G. In-plane shear behaviour by diagonal compression testing of brick masonry walls strengthened with basalt and steel textile reinforced mortars. Constr. Build. Mater. 2020, 240, 117905. [Google Scholar] [CrossRef]
- Fassa Bortolo. Available online: https://www.fassabortolo.it/it/prodotti/-/p/6/26/sistema-consolidamento-e-rinforzo-strutturale (accessed on 5 April 2020).
- Fibrenet. Available online: https://www.fibrenet.it/documenti-tecnici/?cat=schede-tecniche&id=1 (accessed on 5 April 2020).
- Busico, V.; Cipullo, R. Microstructure of polypropylene. Prog. Polym. Sci. 2001, 26, 443–533. [Google Scholar] [CrossRef]
- Karger-Kocsis, J. Polypropylene: An AZ Reference; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Song, P.S.; Hwang, S.; Sheu, B.C. Strength properties of nylon-and polypropylene-fiber-reinforced concretes. Cem. Concr. Res. 2005, 35, 1546–1550. [Google Scholar] [CrossRef]
- Hsie, M.; Tu, C.; Song, P.S. Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater. Sci. Eng. A 2008, 494, 153–157. [Google Scholar] [CrossRef]
- Umair, S.M.; Numada, M.; Amin, M.N.; Meguro, K. Fiber reinforced polymer and polypropylene composite retrofitting technique for masonry structures. Polymers 2015, 7, 963–984. [Google Scholar] [CrossRef] [Green Version]
- Sathiparan, N.; Mayorca, P.; Nesheli, K.N.; Guragain, R.; Meguro, K. Experimental study on in-plane and out-of-plane behavior of masonry wallettes retrofitted by PP-band meshes. Seisan Kenkyu 2005, 57, 530–533. [Google Scholar]
- Nayak, S.; Dutta, S.C. Improving seismic performance of masonry structures with openings by polypropylene bands and L-shaped reinforcing bars. J. Perform. Constr. Facil. 2016, 30, 04015003. [Google Scholar] [CrossRef]
- Banerjee, S.; Nayak, S.; Das, S. Enhancing the flexural behaviour of masonry wallet using PP band and steel wire mesh. Constr. Build. Mater. 2019, 194, 179–191. [Google Scholar] [CrossRef]
- Saleem, M.U.; Numada, M.; Amin, M.N.; Meguro, K. Seismic response of PP-band and FRP retrofitted house models under shake table testing. Constr. Build. Mater. 2016, 111, 298–316. [Google Scholar] [CrossRef]
- ASTM C109/C109M Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. Or 50-mm Cube Specimens); American Society for Testing and Materials: West Conshohocken, PA, USA, 2016.
- ASTM E519 Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages; American Society for Testing and Materials: West Conshohocken, PA, USA, 2007.
- Mustafaraj, E.; Yardim, Y. Retrofitting damaged unreinforced masonry using external shear strengthening techniques. J. Build. Eng. 2019, 26, 100913. [Google Scholar] [CrossRef]
- Mustafaraj, E.; Yardim, Y. In-plane shear strengthening of unreinforced masonry walls using GFRP jacketing. Period. Polytech. Civ. Eng. 2018, 62, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Yardim, Y.; Lalaj, O. Shear strengthening of unreinforced masonry wall with different fiber reinforced mortar jacketing. Constr. Build. Mater. 2016, 102, 149–154. [Google Scholar] [CrossRef]
- Italian Building Code. Aggiornamento Delle «Norme Tecniche per le Costruzioni; Italian Government: Rome, Italy, 2018. (In Italian)
- Tomaževic, M. Earthquake-Resistant Design of Masonry Buildings; World Scientific Publishing Co.: Singapore, 1999. [Google Scholar]
- Yardim, Y.; Mustafaraj, E.; Luga, E. Effects of material properties on seismic vulnerability assessment of unreinforced masonry buildings. KSCE J. Civ. Eng. 2020, 24, 1557–1567. [Google Scholar] [CrossRef]
- Turnšek, V.; Cacovic, F. Some experimental results on the strength of brick masonry walls. In Proceedings of the 2nd International Brick Masonry Conference, Stoke-on-Trent, UK, 12–15 April 1971. [Google Scholar]
- Brignola, A.; Frumento, S.; Lagomarsino, S.; Podesta, S. Identification of shear parameters of masonry panels through the in-situ diagonal compression test. Int. J. Archit. Herit. 2008, 3, 52–73. [Google Scholar] [CrossRef]
Property | Value/Rating |
---|---|
Specific gravity (g/cm³) | 0.91 |
Fiber length (mm) | 12 |
Fiber diameter (μm) | 18 |
Melt point (°C) | 160 |
Ignition point (°C) | 365 |
Thermal conductivity | Low |
Electrical conductivity | Low |
Specific surface area of the fiber (m2/kg) | 250 |
Acid resistance | High |
Alkali resistance (%) | 100 |
Tensile strength (MPa) | 300–400 |
Young’s modulus (MPa) | 4000 |
Property | Shape/Value |
---|---|
Mesh shape | Quadrangular |
Mesh size (mm) | 30 × 45 |
Net mesh size (mm) | 27 × 42 |
Weight density (kg/m2) | 0.16 |
Tensile strength—warp (kN/m) | 9.3 |
Elongation at failure—warp (%) | 16 |
Tensile strength—weft (kN/m) | 17 |
Elongation at failure—weft (%) | 13 |
Young’s modulus—polypropylene (MPa) | 1450 |
Test Label | Nominal Wall Dimensions | Reinforcement Type | ||
---|---|---|---|---|
Height h (mm) | Width w (mm) | Thickness t (mm) | ||
SW-1-URM | 650 | 650 | 120 | Unreinforced |
SW-2-URM | 650 | 650 | 120 | Unreinforced |
SW-3-PF | 650 | 650 | 120 | Polypropylene fibers |
SW-4-PF | 650 | 650 | 120 | Polypropylene fibers |
W-5-URM | 1200 | 1200 | 250 | Unreinforced |
W-6-PF | 1200 | 1200 | 250 | Polypropylene fibers |
LW-7-URM | 1800 | 900 | 500 | Unreinforced |
LW-8-URM | 1800 | 900 | 500 | Unreinforced |
LW-9-URM | 1800 | 900 | 250 | Unreinforced |
LW-7-PN | 1800 | 900 | 500 | Polypropylene net |
LW-8-PN | 1800 | 900 | 500 | Polypropylene net |
LW-9-PN | 1800 | 900 | 250 | Polypropylene net |
Specimen | Water Absorption (%) | Compressive Strength (MPa) | Tensile Strength (MPa) |
---|---|---|---|
Full-dimension brick | 22 (0.13) | 24.30 (0.12) | 4.54 (0.11) |
Half-size brick | 17 (0.04) | 20.13 (0.10) | 3.82 (0.16) |
Mortar (wall construction) | – | 3.02 (0.10) | 1.97 (0.02) |
Mortar (plastering) | – | 17.64 (0.17) | 2.12 (0.09) |
Brick masonry (half bricks, 10 mm bed joints) | – | 13.69 (0.08) | – |
(full bricks, 15 mm bed joints) | – | 8.36 (0.11) | – |
Panel Label | Maximum In-Plane Load, P (kN) | Shear Strength, SS (MPa) | Ultimate Drift, δ (%) | Shear Modulus, G1 (GPa) | Shear Modulus, G2 (GPa) |
---|---|---|---|---|---|
SW-1-URM | 54.80 | 0.496 | 0.122 | 5.57 | 2.567 |
SW-2-URM | 54.90 | 0.498 | 0.113 | 2.34 | 1.828 |
SW-URM-average | 54.85 | 0.497 | 0.118 | 3.96 | 2.198 |
SW-3-PF | 169.4 | 1.535 | 0.367 | 26.01 | 1.069 |
SW-4-PF | 179.3 | 1.626 | 0.468 | 117.05 | 1.852 |
SW-PF-average | 174.4 | 1.580 | 0.418 | 71.53 | 1.461 |
W-5-URM | 94.66 | 0.223 | 0.280 | 3.91 | 0.762 |
W-6-PF | 229.1 | 0.587 | 0.434 | N/A | 0.182 |
Test Label | Panel Dimensions (cm) | Compressive Vertical Load+ Pv (kN) | Maximum Shear Load (kN) | Maximum Shear Load (kN) (Upper Semi-Panel) | Maximum Shear Load (kN) (Lower Semi-Panel) |
---|---|---|---|---|---|
LW-7-URM * | 90 × 48.6 × 180.5 | 93.1 | 125.6 | 109.3 | 16.6 |
LW-8-URM * | 90 × 48.6 × 190 | 80.7 | 101.6 | 45.7 | 55.9 |
LW-9-URM ** | 90 × 25 × 179 | 89.2 | 107.1 | 50.0 | 61.3 |
LW-7-PN * | 90 × 54.5 × 180.5 | 90.1 | 102.7 | 46.0 | 56.8 |
LW-8-PN * | 90 × 52 × 190 | 86.6 | 132.3 | 52.0 | 87.6 |
LW-9-PN ** | 90 × 26 × 180 | 84.5 | 102.4 | 63.4 | 43.4 |
Test No. | Panel Dimensions (cm) | Shear Load at Failure Tiu (kN) | Shear Stress τu (MPa) | Compressive Stress σ0 (MPa) | Shear Strength τ0 (MPa) | Shear Modulus G (MPa) |
---|---|---|---|---|---|---|
LW-7-URM * | 90 × 48.6 × 180.5 | 109.3 | 0.250 | 0.213 | 0.189 | 77 |
LW-8-URM * | 90 × 48.6 × 190 | 55.9 | 0.128 | 0.184 | 0.080 | 133 |
LW-9-URM ** | 90 × 25 × 179 | 61.3 | 0.272 | 0.396 | 0.171 | 100 |
LW-7-PN * | 90 × 54.5 × 180.5 | 56.8 | 0.130 | 0.206 | 0.078 | 309 |
LW-8-PN * | 90 × 52 × 190 | 87.6 | 0.200 | 0.198 | 0.145 | 343 |
LW-9-PN ** | 90 × 26 × 180 | 63.4 | 0.282 | 0.376 | 0.183 | 234 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustafaraj, E.; Yardim, Y.; Corradi, M.; Borri, A. Polypropylene as a Retrofitting Material for Shear Walls. Materials 2020, 13, 2503. https://doi.org/10.3390/ma13112503
Mustafaraj E, Yardim Y, Corradi M, Borri A. Polypropylene as a Retrofitting Material for Shear Walls. Materials. 2020; 13(11):2503. https://doi.org/10.3390/ma13112503
Chicago/Turabian StyleMustafaraj, Enea, Yavuz Yardim, Marco Corradi, and Antonio Borri. 2020. "Polypropylene as a Retrofitting Material for Shear Walls" Materials 13, no. 11: 2503. https://doi.org/10.3390/ma13112503
APA StyleMustafaraj, E., Yardim, Y., Corradi, M., & Borri, A. (2020). Polypropylene as a Retrofitting Material for Shear Walls. Materials, 13(11), 2503. https://doi.org/10.3390/ma13112503