Improving the Forming Quality of Laser Dynamic Flexible Micropunching by Laser Pre-Shocking
Abstract
:1. Introduction
2. Experiments
2.1. Experimental Setup and Method
2.2. Material Preparation
3. Results and Discussion
3.1. Effect of LPS on Grain Size and Surface Roughness
3.2. Fracture Morphology
3.3. Section Morphology
3.4. Shape Accuracy and Dimensional Accuracy
3.4.1. Dimensional Accuracy
3.4.2. Shape Accuracy
4. Conclusions
- Grains are refined, and the surface roughness of copper foil decreases after LPS. For the copper foils annealed at 650 °C, the average grain size decreases from 51.9 to 42.7 µm, and the surface roughness decreases from 0.430 to 0.362 µm after LPS.
- The increase in laser energy density and grain size lead to the deterioration of the fracture surface. LPS can improve the quality of the fracture surface because the increase in the flow stress and yield caused by LPS result in an increase in the shearing zone and a decrease in the rollover.
- The dimensional and shape accuracy of punched holes can be improved by LPS compared with punched holes without LPS, because the LPS suppresses surface roughening in plastic deformation and improves fracture strain.
- When the grain size is close to the thickness of the copper foil, the forming quality of the punched parts becomes uncertain, because the mechanical properties of a single grain cannot be ignored in this case. LPS can reduce the uncertainty of laser dynamic flexible micropunching to improve the stability of the laser dynamic flexible micropunching process.
Author Contributions
Funding
Conflicts of Interest
References
- Teyfouri, A.; Ahmadi, M.; Lori, E.S.; Sorooshian, S. A Review on Micro Formings. Mod. Appl. Sci. 2015, 9, 230–239. [Google Scholar] [CrossRef]
- Saotome, Y.; Yasuda, K.; Kaga, H. Microdeep drawability of very thin sheet steels. J. Mater. Process. Technol. 2001, 113, 641–647. [Google Scholar] [CrossRef]
- Gau, J.T.; Principe, C.; Yu, M. Springback behavior of brass in micro sheet forming. J. Mater. Process. Technol. 2007, 191, 7–10. [Google Scholar] [CrossRef]
- Joo, B.-Y.; Rhim, S.-H.; Oh, S.-I. Micro-hole fabrication by mechanical punching process. J. Mater. Process. Technol. 2005, 170, 593–601. [Google Scholar] [CrossRef]
- Wielage, H.; Vollertsen, F. Classification of laser shock forming within the field of high speed forming processes. J. Mater. Process. Technol. 2011, 211, 953–957. [Google Scholar] [CrossRef]
- Liu, H.; Shen, Z.; Wang, X.; Wang, H.; Tao, M. Numerical simulation and experimentation of a novel micro scale laser high speed punching. Int. J. Mach. Tools Manuf. 2010, 50, 491–494. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, T.; Shen, Z.; Zhang, D.; Ma, Y.; Gu, Y.; Liu, H. Forming Properties of a Microscale Laser Dynamic Flexible Forming Technique. Mater. Manuf. Process. 2016, 31, 745–750. [Google Scholar] [CrossRef]
- Liu, H.; Lu, M.; Wang, X.; Shen, Z.; Gu, C.; Gu, Y. Micro-punching of aluminum foil by laser dynamic flexible punching process. Int. J. Mater. Form. 2013, 8, 183–196. [Google Scholar] [CrossRef]
- Wang, X.; Qian, Q.; Shen, Z.; Li, J.; Zhang, H.; Liu, H. Numerical simulation of flexible micro-bending processes with consideration of grain structure. Comput. Mater. Sci. 2015, 110, 134–143. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, J.; Liu, H.; Wang, X.; Ma, Y. Reducing the rebound effect in micro-scale laser dynamic flexible forming through using plasticine as pressure-carrying medium. Int. J. Mach. Tools Manuf. 2019, 141, 1–18. [Google Scholar] [CrossRef]
- Zhang, K.F.; Kun, L. Classification of size effects and similarity evaluating method in micro forming. J. Mater. Process. Technol. 2009, 209, 4949–4953. [Google Scholar] [CrossRef]
- Xu, J.; Li, J.; Shi, L.; Shan, D.; Guo, B. Effects of temperature, strain rate and specimen size on the deformation behaviors at micro/meso-scale in ultrafine-grained pure Al. Mater. Charact. 2015, 109, 181–188. [Google Scholar] [CrossRef]
- Janssen, P.J.M.; de Keijser, T.H.; Geers, M.G.D. An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness. Mater. Sci. Eng. A 2006, 419, 238–248. [Google Scholar] [CrossRef]
- Zheng, C.; Zhang, X.; Liu, Z.; Ji, Z.; Yu, X.; Song, L. Investigation on initial grain size and laser power density effects in laser shock bulging of copper foil. Int. J. Adv. Manuf. Technol. 2018, 96, 1483–1496. [Google Scholar] [CrossRef]
- Raulea, L.V.; Goijaerts, A.M.A.; Govaert, L.L.; Baaijens, F.F. Size effects in the processing of thin metal sheets. J. Mater. Process. Technol. 2001, 115, 44–48. [Google Scholar] [CrossRef]
- Fenske, H.; Vollertsen, F. Laser shock punching: Principle and influencing factors. Prod. Eng. 2019, 13, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Zhang, X.; Zhang, Y.; Ji, Z.; Luan, Y.; Song, L. Effects of laser power density and initial grain size in laser shock punching of pure copper foil. Opt. Lasers Eng. 2018, 105, 35–42. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, J.; Li, P.; Liu, H.; Yan, Z.; Ma, Y.; Wang, X. Deformation and fracture behaviors of copper sheet in laser dynamic flexible forming. J. Manuf. Process. 2019, 37, 82–90. [Google Scholar] [CrossRef]
- Lu, J.Z.; Luo, K.Y.; Zhang, Y.K.; Sun, G.F.; Gu, Y.Y.; Zhou, J.Z.; Ren, X.D.; Zhang, X.C.; Zhang, L.F.; Chen, K.M.; et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel. Acta Mater. 2010, 58, 5354–5362. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, Y.L.; Noyan, I.C. Microscale Laser Shock Peening of Thin Films, Part 2: High Spatial Resolution Material Characterization. J. Manuf. Sci. Eng. 2004, 126, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Luo, K.-Y.; Lu, J.-Z.; Zhang, L.-F.; Zhong, J.-W.; Guan, H.-B.; Qian, X.-M. The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing. Mater. Des. 2010, 31, 2599–2603. [Google Scholar] [CrossRef]
- Dai, F.Z.; Lu, J.Z.; Zhang, Y.K.; Luo, K.Y.; Wang, Q.W.; Zhang, L.; Hua, X.J. Effect of initial surface topography on the surface status of LY2 aluminum alloy treated by laser shock processing. Vacuum 2012, 86, 1482–1487. [Google Scholar] [CrossRef]
- Haifeng, Y.; Fei, X.; Yan, W.; Le, J.; Hao, L.; Jingbin, H. Manufacturing profile-free copper foil using laser shock flattening. Int. J. Mach. Tools Manuf. 2020, 152, 103542. [Google Scholar] [CrossRef]
- Man, J.; Yang, H.; Wang, Y.; Chen, H.; Xiong, F. Study on controllable surface morphology of the micro-pattern fabricated on metallic foil by laser shock imprinting. Opt. Laser Technol. 2019, 119, 105669. [Google Scholar] [CrossRef]
- Zheng, C.; Sun, S.; Ji, Z.; Wang, W.; Liu, J. Numerical simulation and experimentation of micro scale laser bulge forming. Int. J. Mach. Tools Manuf. 2010, 50, 1048–1056. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, X.; Liu, H.; Wang, Y.; Wang, C. Rubber-induced uniform laser shock wave pressure for thin metal sheets microforming. Appl. Surf. Sci. 2015, 327, 307–312. [Google Scholar] [CrossRef]
- Song, L.; Zhang, X.; Zhang, Y.; Li, H.; Ji, Z.; Zheng, C. Shortening post-processing and improving forming quality of holes in laser shock punching with the aid of silicone rubber. Opt. Laser Technol. 2018, 106, 442–450. [Google Scholar] [CrossRef]
- Meng, B.; Fu, M.W.; Fu, C.M.; Wang, J.L. Multivariable analysis of micro shearing process customized for progressive forming of micro-parts. Int. J. Mech. Sci. 2015, 93, 191–203. [Google Scholar] [CrossRef]
- Miyazaki, S.; Shibata, K.; Fujita, H. Effect of specimen thickness on mechanical properties of polycrystalline aggregates with various grain sizes. Acta Metall. 1979, 27, 855–862. [Google Scholar] [CrossRef]
- Li, J.; Gao, H.; Cheng, G.J. Forming Limit and Fracture Mode of Microscale Laser Dynamic Forming. J. Manuf. Sci. Eng. 2010, 132, 061005. [Google Scholar] [CrossRef]
- Chan, W.L.; Fu, M.W. Experimental studies and numerical modeling of the specimen and grain size effects on the flow stress of sheet metal in microforming. Mater. Sci. Eng. A 2011, 528, 7674–7683. [Google Scholar] [CrossRef]
- Meng, B.; Fu, M.W. Size effect on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening. Mater. Des. 2015, 83, 400–412. [Google Scholar] [CrossRef]
- Furushima, T.; Tsunezaki, H.; Manabe, K.-I.; Alexsandrov, S. Ductile fracture and free surface roughening behaviors of pure copper foils for micro/meso-scale forming. Int. J. Mach. Tools Manuf. 2014, 76, 34–48. [Google Scholar] [CrossRef]
- Gau, J.T.; Principe, C.; Wang, J. An experimental study on size effects on flow stress and formability of aluminm and brass for microforming. J. Mater. Process. Technol. 2007, 184, 42–46. [Google Scholar] [CrossRef]
- Xu, J.; Guo, B.; Wang, C.; Shan, D. Blanking clearance and grain size effects on micro deformation behavior and fracture in micro-blanking of brass foil. Int. J. Mach. Tools Manuf. 2012, 60, 27–34. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Y.; Shen, Z.; Gu, Y.; Zhang, D.; Qiu, T.; Liu, H. Size effects on formability in microscale laser dynamic forming of copper foil. J. Mater. Process. Technol. 2015, 220, 173–183. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Laser beam diameter (mm) | 2 |
Mold hole diameter (mm) | 1.5 |
PMMA thickness (mm) | 3 |
Black paint thickness (µm) | ~50 |
Rubber thickness used in LPS (µm) | 100 |
Rubber thickness used in the micropunching (µm) | 300 |
Laser energy density (J/cm2) | 10.3, 11.6, 14.2, 18.3, 28.3, 38.2, 45.2 |
Laser Parameters | Values |
---|---|
Laser energy (mJ) | 80–1800 |
Pulse width (ns) | 8 |
Wave length (nm) | 1064 |
Exit spot diameter (mm) | 9 |
Annealing Treatment | 350 °C, 1 h | 450 °C, 1 h | 550 °C, 1 h | 650 °C, 1 h |
---|---|---|---|---|
Without LPS (µm) | 7 ± 3 | 10 ± 4 | 19 ± 6 | 52 ± 6 |
With LPS (µm) | 6 ± 2 | 8 ± 3 | 16 ± 5 | 42 ± 6 |
Annealing Treatment | 350 °C, 1 h | 450 °C, 1 h | 550 °C, 1 h | 650 °C, 1 h |
---|---|---|---|---|
Without LPS | 8.2 ± 4.1 | 5.6 ± 2.0 | 2.8 ± 0.8 | 1.0 ± 0.1 |
With LPS | 8.8 ± 3.1 | 6.7 ± 2.2 | 3.4 ± 1.0 | 1.2 ± 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Shen, Z.; Lin, Y.; Liu, K.; Zhou, G.; Wang, Y.; Zhang, L.; Li, P.; Liu, H.; Wang, X. Improving the Forming Quality of Laser Dynamic Flexible Micropunching by Laser Pre-Shocking. Materials 2020, 13, 3667. https://doi.org/10.3390/ma13173667
Zhang J, Shen Z, Lin Y, Liu K, Zhou G, Wang Y, Zhang L, Li P, Liu H, Wang X. Improving the Forming Quality of Laser Dynamic Flexible Micropunching by Laser Pre-Shocking. Materials. 2020; 13(17):3667. https://doi.org/10.3390/ma13173667
Chicago/Turabian StyleZhang, Jindian, Zongbao Shen, Youyu Lin, Kai Liu, Guoyang Zhou, Yang Wang, Lei Zhang, Pin Li, Huixia Liu, and Xiao Wang. 2020. "Improving the Forming Quality of Laser Dynamic Flexible Micropunching by Laser Pre-Shocking" Materials 13, no. 17: 3667. https://doi.org/10.3390/ma13173667
APA StyleZhang, J., Shen, Z., Lin, Y., Liu, K., Zhou, G., Wang, Y., Zhang, L., Li, P., Liu, H., & Wang, X. (2020). Improving the Forming Quality of Laser Dynamic Flexible Micropunching by Laser Pre-Shocking. Materials, 13(17), 3667. https://doi.org/10.3390/ma13173667