Carbonization and Preparation of Nitrogen-Doped Porous Carbon Materials from Zn-MOF and Its Applications
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Preparation of Zn-MOF, {Zn2(BDC)2(DABCO)}
2.3. Preparation of NPC Materials
2.4. Electrode Preparation
2.5. Characterization
3. Results and Discussion
3.1. Structure, Morphology, and Composition of NPC Materials
3.2. Porous Property and CO2 Uptake of NPC Materials
3.3. Comparisons Voltammetric Behavior of Various SPCE/NPC Modified Electrode in FeCN
3.4. Detection of H2O2 at SPCE/NPCT
3.5. Flow Injection Analysis (FIA) Detection of H2O2 at SPCE/NPC600
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, H.L.; Liu, B.; Lan, Y.Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F.Q.; Xu, Q. From Metal-Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. J. Am. Chem. Soc. 2011, 133, 11854–11857. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Kim, T.; Im, J.H.; Kim, Y.S.; Lee, K.; Jung, H.; Park, C.R. MOF-Derived Hierarchically Porous Carbon with Exceptional Porosity and Hydrogen Storage Capacity. Chem. Mater. 2012, 24, 464–470. [Google Scholar] [CrossRef]
- Khan, I.A.; Badshah, A.; Khan, I.; Zhao, D.; Nadeem, M.A. Soft-template carbonization approach of MOF-5 to mesoporous carbon nanospheres as excellent electrode materials for supercapacitor. Microporous Mesoporous Mater. 2017, 253, 169–176. [Google Scholar] [CrossRef]
- Chaikittisilp, W.; Ariga, K.; Yamauchi, Y. A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 2013, 1, 14–19. [Google Scholar] [CrossRef]
- Ling, P.; Hao, Q.; Lei, J.; Ju, H. Porphyrin functionalized porous carbon derived from metal–organic framework as a biomimetic catalyst for electrochemical biosensing. J. Mater. Chem. B 2015, 3, 1335–1341. [Google Scholar] [CrossRef]
- Proietti, E.; Jaouen, F.; Lefevre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J.P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416. [Google Scholar] [CrossRef]
- Liu, B.; Shioyama, H.; Jiang, H.; Zhang, X.; Xu, Q. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 2010, 48, 456–463. [Google Scholar] [CrossRef]
- Khan, I.A.; Badshah, A.; Nadeem, M.A.; Haider, N.; Nadeem, M.A. A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications. Int. J. Hydrog. Energy 2014, 39, 19609–19620. [Google Scholar] [CrossRef]
- Khan, I.A.; Qian, Y.; Badshah, A.; Nadeem, M.A.; Zhao, D. Highly Porous Carbon Derived from MOF-5 as a Support of ORR Electrocatalysts for Fuel Cells. ACS Appl. Mater. Interfaces 2016, 8, 17268–17275. [Google Scholar] [CrossRef]
- Khan, I.A.; Badshah, A.; Nadeem, M.A. Single step pyrolytic conversion of zeolitic imidazolate to CoO encapsulated N-doped carbon nanotubes as an efficient oxygen reduction electrocatalyst. Catal. Commun. 2017, 99, 10–14. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Q.; Xu, J.; Weng, J. Synthesis of hybrid nanocomposites of ZIF-8 with two-dimensional black phosphorus for photocatalysis. RSC Adv. 2016, 6, 69033–69039. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Z.; Qin, L.; Dai, J. Template-free preparation of yeast-derived three-dimensional hierarchical porous carbon for highly efficient sulfamethazine adsorption from water. J. Taiwan Inst. Chem. E 2018. [Google Scholar] [CrossRef]
- Wei, L.; Tian, K.; Jin, Y.; Zhang, X.; Guo, X. Three-dimensional porous hollow microspheres of activated carbon for high-performance electrical double-layer capacitors. Microporous Mesoporous Mater. 2016, 227, 210–218. [Google Scholar] [CrossRef]
- Li, Y.; Xu, R.; Wang, X.; Wang, B.; Cao, J.; Yang, J.; Wei, J. Waste wool derived nitrogen-doped hierarchical porous carbon for selective CO2 capture. RSC Adv. 2018, 8, 19818–19826. [Google Scholar] [CrossRef] [Green Version]
- Estevez, L.; Barpaga, D.; Zheng, J.; Sabale, S.; Patel, R.L.; Zhang, J.-G.; McGrail, B.P.; Motkuri, R.K. Hierarchically Porous Carbon Materials for CO2 Capture: The Role of Pore Structure. Ind. Eng. Chem. Res. 2018, 57, 1262–1268. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Williams, K.; Gao, W.Y.; Ma, S. A new microporous carbon material synthesized via thermolysis of a porous aromatic framework embedded with an extra carbon source for low-pressure CO2 uptake. Chem. Commun. 2013, 49, 10269–10271. [Google Scholar] [CrossRef]
- Oschatz, M.; Antonietti, M. A search for selectivity to enable CO2 capture with porous adsorbents. Energy Environ. Sci. 2018, 11, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, X.; Gao, J.; Zhang, Y.; Lu, Q.; Liu, M. Hollow porous carbon spheres with hierarchical nanoarchitecture for application of the high performance supercapacitors. Electrochim. Acta 2016, 211, 183–192. [Google Scholar] [CrossRef]
- Geng, W.; Ma, F.; Wu, G.; Song, S.; Wan, J.; Ma, D. MgO-templated hierarchical porous carbon sheets derived from coal tar pitch for supercapacitors. Electrochim. Acta 2016, 191, 854–863. [Google Scholar] [CrossRef]
- Kim, H.R.; Yoon, T.-U.; Kim, S.-I.; An, J.; Bae, Y.-S.; Lee, C.Y. Beyond pristine MOFs: Carbon dioxide capture by metal–organic frameworks (MOFs)-derived porous carbon materials. RSC Adv. 2017, 7, 1266–1270. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Chen, F.; Li, B.; Qian, G.; Zhou, W.; Chen, B. Porous metal–organic frameworks for fuel storage. Coord. Chem. 2018, 373, 167–198. [Google Scholar] [CrossRef]
- Lin, R.-B.; Xiang, S.; Xing, H.; Zhou, W.; Chen, B. Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. 2019, 378, 87–103. [Google Scholar] [CrossRef]
- Du, W.; Bai, Y.-L.; Xu, J.; Zhao, H.; Zhang, L.; Li, X.; Zhang, J. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. J. Power Sources 2018, 402, 281–295. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, J.; Xu, Q.; Wu, X.-T.; Zhu, Q.-L. Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coord. Chem. 2018, 376, 248–276. [Google Scholar] [CrossRef]
- Müller-Buschbaum, K.; Beuerle, F.; Feldmann, C. MOF based luminescence tuning and chemical/physical sensing. Microporous Mesoporous Mater. 2015, 216, 171–199. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rathod, V.K. Magnetic-metal organic framework (magnetic-MOF): A novel platform for enzyme immobilization and nanozyme applications. Int. J. Biol. Macromol. 2018. [Google Scholar] [CrossRef]
- Torad, N.L.; Hu, M.; Kamachi, Y.; Takai, K.; Imura, M.; Naito, M.; Yamauchi, Y. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem. Commun. 2013, 49, 2521–2523. [Google Scholar] [CrossRef]
- Aijaz, A.; Sun, J.K.; Pachfule, P.; Uchida, T.; Xu, Q. From a metal-organic framework to hierarchical high surface-area hollow octahedral carbon cages. Chem. Commun. 2015, 51, 13945–13948. [Google Scholar] [CrossRef]
- Chen, J.J.; Chen, Y.T.; Senthil Raja, D.; Kang, Y.H.; Tseng, P.C.; Lin, C.H. Carbonization and oxidation of metal-organic frameworks based on 1,4-naphthalene dicarboxylates. Sci. Technol. Adv. Mater. 2015, 16. [Google Scholar] [CrossRef]
- Chen, J.J.; Chen, Y.T.; Raja, D.S.; Kang, Y.H.; Tseng, P.C.; Lin, C.H. Metal-Organic Frameworks to Metal/Metal Oxide Embedded Carbon Matrix: Synthesis, Characterization and Gas Sorption Properties. Materials 2015, 8, 5336–5347. [Google Scholar] [CrossRef] [Green Version]
- Sivasankar, K.; Devasenathipathy, R.; Wang, S.-F.; Kohila rani, K.; Raja, D.S.; Lin, C.-H. Synthesis of hierarchical mesoporous graphite oxide/Al2O3 from MIL-100(Al) for the electrochemical determination of caffeic acid in red wine samples. J. Taiwan Inst. Chem. E 2018, 84, 188–195. [Google Scholar] [CrossRef]
- Sivasankar, K.; Rani, K.K.; Wang, S.F.; Devasenathipathy, R.; Lin, C.H. Copper Nanoparticle and Nitrogen Doped Graphite Oxide Based Biosensor for the Sensitive Determination of Glucose. Nanomaterials 2018, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Cho, D.; Venkateswarlu, S.; Yoon, M. Systematic study on preparation of copper nanoparticle embedded porous carbon by carbonization of metal–organic framework for enzymatic glucose sensor. RSC Adv. 2017, 7, 10592–10600. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.; Dong, W.; Ren, Y.; Zhang, C.; Chen, Q. Preparation of Nano Au and Pt Alloy Microspheres Decorated with Reduced Graphene Oxide for Nonenzymatic Hydrogen Peroxide Sensing. Langmuir 2018, 34, 2235–2244. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, B.; Jen-Lin, C.; Jyh-Myng, Z. Extremely Stable Copper—Polymelamine Composite Material for Amperometric Hydrogen Peroxide Sensing. J. Polym. Sci. 2013, 51, 1639–1646. [Google Scholar] [CrossRef]
- Qinglin, S.; Xiujuan, Q.; Jianbin, Z. The Hybrid of Gold Nanoparticles and 3D Flower-like MnO2 Nanostructure with Enhanced Activity for Detection of Hydrogen Peroxide. Electroanalysis 2018, 30, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xu, M.; Zhao, R.; Chen, G. A highly sensitive H2O2 sensor based on zinc oxide nanorod arrays film sensing interface. Analyst 2010, 135, 1992–1996. [Google Scholar] [CrossRef]
- Al-Hardan, N.H.; Abdul Hamid, M.A.; Shamsudin, R.; Othman, N.K.; Kar Keng, L. Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods. Sensors 2016, 16, 1004. [Google Scholar] [CrossRef] [Green Version]
- Chaemchuen, S.; Zhou, K.; Kabir, N.A.; Chen, Y.; Ke, X.; Van Tendeloo, G.; Verpoort, F. Tuning metal sites of DABCO MOF for gas purification at ambient conditions. Microporous Mesoporous Mater. 2015, 201, 277–285. [Google Scholar] [CrossRef]
- Qadir, N.U.; Said, S.A.M.; Bahaidarah, H.M. Structural stability of metal organic frameworks in aqueous media—Controlling factors and methods to improve hydrostability and hydrothermal cyclic stability. Microporous Mesoporous Mater. 2015, 201, 61–90. [Google Scholar] [CrossRef]
- Tarlani, A.; Fallah, M.; Lotfi, B.; Khazraei, A.; Golsanamlou, S.; Muzart, J.; Mirza-Aghayan, M. New ZnO nanostructures as non-enzymatic glucose biosensors. Biosens. Bioelectron. 2015, 67, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.-T.; Li, B.-H.; Pei, T.; Lin, C.-H.; Lee, S. Raman investigation on carbonization process of metal-organic frameworks. J. Raman Spectrosc. 2016, 47, 1271–1275. [Google Scholar] [CrossRef]
- Gadipelli, S.; Guo, Z.X. Tuning of ZIF-Derived Carbon with High Activity, Nitrogen Functionality, and Yield—A Case for Superior CO2 Capture. ChemSusChem 2015, 8, 2123–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Fu, L.; Liu, N.; Liu, M.; Wang, Y.; Liu, Z. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv. Mater. 2011, 23, 1020–1024. [Google Scholar] [CrossRef]
- Gomez-Gualdron, D.A.; Moghadam, P.Z.; Hupp, J.T.; Farha, O.K.; Snurr, R.Q. Application of Consistency Criteria to Calculate BET Areas of Micro- and Mesoporous Metal-Organic Frameworks. J. Am. Chem. Soc. 2016, 138, 215–224. [Google Scholar] [CrossRef]
- Thiruppathi, M.; Thiyagarajan, N.; Gopinathan, M.; Chang, J.-L.; Zen, J.-M. A dually functional 4-aminophenylboronic acid dimer for voltammetric detection of hypochlorite, glucose and fructose. Microchim. Acta 2017, 184, 4073–4080. [Google Scholar] [CrossRef]
- Zen, J.-M.; Tsai, D.-M.; Senthil Kumar, A. Flow Injection Analysis of Ascorbic Acid in Real Samples Using a Highly Stable Chemically Modified Screen-Printed Electrode. Electroanalysis 2003, 15, 1171–1176. [Google Scholar] [CrossRef]
- Thiruppathi, M.; Lin, P.-Y.; Chou, Y.-T.; Ho, H.-Y.; Wu, L.-C.; Ho, J.-A.A. Simple aminophenol-based electrochemical probes for non-enzymatic, dual amperometric detection of NADH and hydrogen peroxide. Talanta 2019, 200, 450–457. [Google Scholar] [CrossRef]
Sample | ID/IG | SBETa (m2/g) | Vtotalb (cm3/g) | Vmicro c (cm3/g) | Pore Size (nm) | CO2 uptaked (mmol/g) (wt %) |
---|---|---|---|---|---|---|
NPC500 | 0.92 | 273 | 0.18 | 0.09 (50) | 0.75, 1.4, 2.1~3 | 2.85 (12.54) |
NPC550 | 0.98 | 287 | 0.20 | 0.091 (45) | 0.75, 1.4, 2.1~3 | 1.20 (5.28) |
NPC600 | 1.01 | 289 | 0.22 | 0.094 (42) | 0.75, 1.4, 2.1~3 | 1.24 (5.46) |
NPC700 | 1.07 | 296 | 0.22 | 0.10 (45) | 0.89, 1.4, 2.1~3 | 1.71 (7.52) |
NPC800 | 1.24 | 1192 | 0.92 | 0.39 (42) | 0.75, 1.4, 2.1~3 | 4.71 (20.72) |
NPC900 | 1.25 | 303 | 0.45 | 0.06 (13) | 1.4, 5-10 | 2.51 (11.04) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivasankar, K.; Pal, S.; Thiruppathi, M.; Lin, C.-H. Carbonization and Preparation of Nitrogen-Doped Porous Carbon Materials from Zn-MOF and Its Applications. Materials 2020, 13, 264. https://doi.org/10.3390/ma13020264
Sivasankar K, Pal S, Thiruppathi M, Lin C-H. Carbonization and Preparation of Nitrogen-Doped Porous Carbon Materials from Zn-MOF and Its Applications. Materials. 2020; 13(2):264. https://doi.org/10.3390/ma13020264
Chicago/Turabian StyleSivasankar, Kulandaivel, Souvik Pal, Murugan Thiruppathi, and Chia-Her Lin. 2020. "Carbonization and Preparation of Nitrogen-Doped Porous Carbon Materials from Zn-MOF and Its Applications" Materials 13, no. 2: 264. https://doi.org/10.3390/ma13020264
APA StyleSivasankar, K., Pal, S., Thiruppathi, M., & Lin, C. -H. (2020). Carbonization and Preparation of Nitrogen-Doped Porous Carbon Materials from Zn-MOF and Its Applications. Materials, 13(2), 264. https://doi.org/10.3390/ma13020264