Evaluation of Warm Rubberized Stone Mastic Asphalt Mixtures through the Marshall and Gyratory Compactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Binders, Rubber, Polymer and WMA Additive
2.1.2. Aggregates
2.1.3. RSMA Control Mixture and W-RSMA Mixture
2.2. Test Methods
2.2.1. Compactability
2.2.2. Water Sensitivity
3. Results and Discussion
3.1. Compactability with Marshall Compactor
3.2. Compactability with Gyratory Compactor
3.3. Water Sensitivity with Marshall Compactor Samples
3.4. Water Sensitivity with Gyratory Compactor
3.5. Attainable Reduction of Production Temperature
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yadykina, V.; Tobolenko, S.; Trautvain, A.; Zhukova, A. The influence of stabilizing additives on physical and mechanical properties of stone mastic asphalt concrete. Procedia Eng. 2015, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Putman, B.J.; Amirkhanian, S.N. Utilization of waste fibers in stone matrix asphalt mixtures. Resour. Conserv. Recycl. 2004, 265–274. [Google Scholar] [CrossRef]
- Mokhtari, A.; Nejad, F.M. Mechanistic approach for fiber and polymer modified SMA mixtures. Constr. Build. Mater. 2012, 36, 381–390. [Google Scholar] [CrossRef]
- Manosalvas-Paredes, M.; Gallego, J.; Saiz, L.; Bermejo, J.M. Rubber modified binders as an alternative to cellulose fiber—SBS polymers in Stone Matrix Asphalt. Constr. Build. Mater. 2016, 121, 727–732. [Google Scholar] [CrossRef]
- Fontes, L.P.T.L.; Trichês, G.; Pais, J.C.; Pereira, P.A.A. Evaluating permanent deformation in asphalt rubber mixtures. Constr. Build. Mater. 2010, 24, 1193–1200. [Google Scholar] [CrossRef]
- Moreno, F.; Sol, M.; Martín, J.; Pérez, M.; Rubio, M.C. The effect of crumb rubber modifier on the resistance of asphalt mixes to plastic deformation. Mater. Des. 2013, 47, 274–280. [Google Scholar] [CrossRef]
- Pasquini, E.; Canestrari, F.; Cardone, F.; Santagata, F.A. Performance evaluation of gap graded Asphalt Rubber mixtures. Constr. Build. Mater. 2011, 25, 2014–2022. [Google Scholar] [CrossRef]
- Paje, S.E.; Luong, J.; Vázquez, V.F.; Bueno, M.; Miró, R. Road pavement rehabilitation using a binder with a high content of crumb rubber: Influence on noise reduction. Constr. Build. Mater. 2013, 47, 789–798. [Google Scholar] [CrossRef]
- Sangiorgi, C.; Tataranni, P.; Simone, A.; Vignali, V.; Lantieri, C.; Dondi, G. Stone mastic asphalt (SMA) with crumb rubber according to a new dry-hybrid technology: A laboratory and trial field evaluation. Constr. Build. Mater. 2018, 182, 200–209. [Google Scholar] [CrossRef]
- D’Angelo, J.; Harm, E.; Bartoszek, J.; Baumgardner, G.; Corrigan, M.; Cowsert, J.; Harman, T.; Jamshidi, M.; Jones, W.; Newcomb, D.; et al. Warm-Mix Asphalt: European Practice; Report No. FHWA-PL-08-007; Federal Highway Administration: Washington, DC, USA, 2008. Available online: https://international.fhwa.dot.gov/pubs/pl08007/pl08007.pdf (accessed on 7 January 2020).
- Rubio, M.C.; Martínez, G.; Baena, L.; Moreno, F. Warm Mix Asphalt: An overview. J. Clean. Prod. 2012, 24, 76–84. [Google Scholar] [CrossRef]
- Capitão, S.D.; Picado-Santos, L.G.; Martinho, F. Pavement engineering materials: Review on the use of warm-mix asphalt. Constr. Build. Mater. 2012, 36, 1016–1024. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Apostolidis, P.; Scarpas, T. Review of warm mix rubberized asphalt concrete: Towards a sustainable paving technology. J. Clean. Prod. 2018, 177, 302–314. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.R.M.; Silva, H.M.R.D.; Abreu, L.P.F.; Fernandes, S.R.M. Use of a warm mix asphalt additive to reduce the production temperatures and to improve the performance of asphalt rubber mixtures. J. Clean. Prod. 2013, 41, 15–22. [Google Scholar] [CrossRef]
- Rodríguez-Alloza, A.M.; Gallego, J. Mechanical performance of asphalt rubber mixtures with warm mix asphalt additives. Mater. Struct. 2017, 50, 147. [Google Scholar] [CrossRef]
- Rodríguez-Alloza, A.M.; Gallego, J. Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives. Mater. Constr. 2017, 67. [Google Scholar] [CrossRef] [Green Version]
- Akisetty, C.K.; Lee, S.J.; Amirkhanian, S.N. Effects of Compaction Temperature on Volumetric Properties of Rubberized Mixes Containing Warm-Mix Additives. J. Mater. Civ. Eng. 2009, 21, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Leng, Z.; Dong, Z.; Tan, Z.; Guo, F.; Yan, J. Workability and mechanical property characterization of asphalt rubber mixtures modified with various warm mix asphalt additives. Constr. Build. Mater. 2018, 175, 392–401. [Google Scholar] [CrossRef]
- Leng, Z.; Yu, H.; Zhang, Z.; Tan, Z. Optimizing the mixing procedure of warm asphalt rubber with wax-based additives through mechanism investigation and performance characterization. Constr. Build. Mater. 2017, 144, 291–299. [Google Scholar] [CrossRef]
- Lee, S.J.; Amirkhanian, S.N.; Kwon, S.Z. The effects of compaction temperature on CRM mixtures made with the SGC and the Marshall compactor. Constr. Build. Mater. 2008, 22, 1122–1128. [Google Scholar] [CrossRef]
- Xu, H.; McIntyre, A.; Adhikari, T.; Hesp, S.; Marks, P.; Tabib, S. Quality and durability of warm rubberized Asphalt cement in Ontario, Canada. Transp. Res. Rec. 2013, 26–32. [Google Scholar] [CrossRef]
- Xu, S.; Xiao, F.; Amirkhanian, S.; Singh, D. Moisture characteristics of mixtures with warm mix asphalt technologies—A review. Constr. Build. Mater. 2017, 142, 148–161. [Google Scholar] [CrossRef]
- Khedmati, M.; Khodaii, A.; Haghshenas, H.F. A study on moisture susceptibility of stone matrix warm mix asphalt. Constr. Build. Mater. 2017, 144, 42–49. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, J.; Liu, L.; Sun, L. Gradation Evaluation of Asphalt Rubber Mixture with Warm-mix Additive. Procedia Soc. Behav. Sci. 2013, 96, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Vega-Zamanillo, Á.; Calzada-Pérez, M.A.; Sánchez-Alonso, E.; Gonzalo-Orden, H. Density, Adhesion and Stiffness of Warm Mix Asphalts. Procedia Soc. Behav. Sci. 2014, 160, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Deng, C.; Li, Q.; Liu, H. Effect of Compaction Methods on Physical and Mechanical Properties of Asphalt Mixture. J. Mater. Civ. Eng. 2019, 31. [Google Scholar] [CrossRef]
- Hartman, A.M.; Gilchrist, M.D.; Walsh, G. Effect of mixture compaction on indirect tensile stiffness and fatigue. J. Transp. Eng. 2001, 127, 370–378. [Google Scholar] [CrossRef]
- Tarefder, R.A.; Ahmad, M. Effect of compaction procedure on air void structure of asphalt concrete. Meas. J. Int. Meas. Confed. 2016, 90, 151–157. [Google Scholar] [CrossRef]
- Consuegra, A.; Little, D.N.; von Quintus, H.; Burati, J. Comparative evaluation of laboratory compaction devices based on their ability to produce mixtures with engineering properties similar to those produced in the field. Transp. Res. Rec. 1989, 1228, 80–87. [Google Scholar]
- Pérez-Jiménez, F.; Martínez, A.H.; Miró, R.; Hernández-Barrera, D.; Araya-Zamorano, L. Effect of compaction temperature and procedure on the design of asphalt mixtures using Marshall and gyratory compactors. Constr. Build. Mater. 2014, 65, 264–269. [Google Scholar] [CrossRef]
- CEDEX. SMA Mixtures Draft Specifications (SMA-DS). Environment Friendly Asphalt Mixture Project. 2013. Available online: http://www.proyectosma.eu//wp-content/uploads/2018/05/files_524aeb98888f4.pdf (accessed on 10 September 2019).
Sieve (mm) (UNE 933-2) | Passing (%) |
---|---|
2 | 100 |
1.5 | 100 |
1 | 100 |
0.5 | 94.1 |
0.25 | 23.7 |
0.125 | 3.7 |
0.063 | 0.4 |
Binder Name for This Study | Binders Composition | Softening Point T (°C) EN 1427 | Penetration (10−1 mm) EN 1426 | Elastic Recovery (%) EN 13398 |
---|---|---|---|---|
B | 50% 50/70 + 50% 160/220 | 43.2 | 98.0 | 2.0 |
B+2.5S+10R | 50% 50/70 + 50% 160/220 + 0.5% Nosbur® ThErmo+ 10% rubber + 2.5% SBS | 66.6 | 55.0 | 83.0 |
Aggregate | Fraction (mm) | Proportion (%) |
---|---|---|
Ophite | 8/11 | 36.2 |
Ophite | 4/8 | 36.0 |
Limestone | 2/4 | 2.0 |
Limestone | 0.5/2 | 9.0 |
Limestone | 0.25/0.5 | 4.0 |
Limestone | 0.063/0.25 | 4.0 |
Calcareous filler | 8.8 |
Mixture | Binder | SBS (%) | CRM (%) | Additive (%) | WMA Additive | Production Ta (°C) |
---|---|---|---|---|---|---|
RSMA | B + 2.5 S + 10R | 2.5 | 10 | 0 | − | 165 |
W-RSMA + T | B + 0.5T + 10R + 2.5S | 2.5 | 10 | 0.5 | Nosbur® ThErmo+ | 165, 155, 145, 135 |
Specimen | Bulk Density (g/cm3) | Air Void (%) | |||
---|---|---|---|---|---|
RSMA 165 °C | #1 | 2.295 | Av = 2.295 SD = 0.0052 | 5.13 | Av = 5.13 SD = 0.213 |
#2 | 2.295 | 5.13 | |||
#3 | 2.289 | 5.37 | |||
#4 | 2.298 | 5.00 | |||
#5 | 2.304 | 4.75 | |||
#6 | 2.289 | 5.37 | |||
#7 | 2.291 | 5.29 | |||
#8 | 2.298 | 5.00 | |||
W-RSMA+T 165 °C | #1 | 2.305 | AV = 2.307 SD = 0.0053 | 4.71 | Av = 4.63 SD = 0.29 |
#2 | 2.314 | 4.34 | |||
#3 | 2.299 | 4.96 | |||
#4 | 2.312 | 4.42 | |||
#5 | 2.307 | 4.63 | |||
#6 | 2.313 | 4.38 | |||
#7 | 2.303 | 4.80 | |||
#8 | 2.305 | 4.71 | |||
W-RSMA+T 155 °C | #1 | 2.289 | Av = 2.295 SD = 0.0041 | 5.37 | Av = 5.13 SD = 0.170 |
#2 | 2.296 | 5.08 | |||
#3 | 2.296 | 5.08 | |||
#4 | 2.295 | 5.13 | |||
#5 | 2.295 | 5.13 | |||
#6 | 2.298 | 5.00 | |||
#7 | 2.289 | 5.37 | |||
#8 | 2.301 | 4.88 | |||
W-RSMA+T 145 °C | #1 | 2.276 | Av = 2.280 SD = 0.007 | 5.91 | Av = 5.75 SD = 0.196 |
#2 | 2.284 | 5.58 | |||
#3 | 2.283 | 5.62 | |||
#4 | 2.273 | 6.04 | |||
#5 | 2.284 | 5.58 | |||
#6 | 2.279 | 5.79 | |||
#7 | 2.275 | 5.95 | |||
#8 | 2.285 | 5.54 | |||
W-RSMA+T 135 °C | #1 | 2.272 | Av = 2.276 SD = 0.0061 | 6.08 | Av = 5.91 SD = 0.173 |
#2 | 2.274 | 5.99 | |||
#3 | 2.282 | 5.66 | |||
#4 | 2.278 | 5.83 | |||
#5 | 2.279 | 5.79 | |||
#6 | 2.275 | 5.95 | |||
#7 | 2.269 | 6.20 | |||
#8 | 2.278 | 5.83 |
Mixture | Production Ta (°C) | ITSd (MPa) EN 12697-23 | ITSw (MPa) EN 12697-23 | ITSR (%) EN 12697-12 |
---|---|---|---|---|
RSMA | 165 | 2.129 | 1.975 | 92.8 |
165 | 1.858 | 1.687 | 90.8 | |
W-RSMA + T | 155 | 1.915 | 1.591 | 83.1 |
145 | 1.785 | 1.396 | 78.2 | |
135 | 1.954 | 1.248 | 63.9 |
Specimen | Bulk Density (g/cm3) | Air Void (%) | |||
---|---|---|---|---|---|
RSMA 165 °C | #1 | 2.298 | Av = 2.296 SD = 0.003 | 5.00206697 | Av = 5.07 SD = 0.11 |
#2 | 2.292 | 5.250103348 | |||
#3 | 2.294 | 5.167424556 | |||
#4 | 2.299 | 4.960727573 | |||
#5 | 2.3 | 4.919388177 | |||
#6 | 2.295 | 5.126085159 | |||
#7 | 2.295 | 5.126085159 | |||
#8 | 2.297 | 5.043406366 | |||
W-RSMA + T 165 °C | #1 | 2.303 | AV = 2.306 SD = 0.004 | 4.795369988 | Av = 4.67 SD = 0.154 |
#2 | 2.309 | 4.547333609 | |||
#3 | 2.311 | 4.464654816 | |||
#4 | 2.307 | 4.630012402 | |||
#5 | 2.308 | 4.588673005 | |||
#6 | 2.299 | 4.960727573 | |||
#7 | 2.306 | 4.671351798 | |||
#8 | 2.307 | 4.630012402 | |||
W-RSMA + T 155 °C | #1 | 2.301 | Av = 2.300 SD = 0.003 | 4.87804878 | Av = 4.92 SD = 0.128 |
#2 | 2.303 | 4.795369988 | |||
#3 | 2.298 | 5.00206697 | |||
#4 | 2.303 | 4.795369988 | |||
#5 | 2.303 | 4.795369988 | |||
#6 | 2.299 | 4.960727573 | |||
#7 | 2.295 | 5.126085159 | |||
#8 | 2.297 | 5.043406366 | |||
W-RSMA + T 145 °C | #1 | 2.294 | Av = 2.391 SD = 0.002 | 5.167424556 | Av = 5.29 SD = 0.100 |
#2 | 2.292 | 5.250103348 | |||
#3 | 2.287 | 5.456800331 | |||
#4 | 2.291 | 5.291442745 | |||
#5 | 2.294 | 5.167424556 | |||
#6 | 2.29 | 5.332782141 | |||
#7 | 2.289 | 5.374121538 | |||
#8 | 2.292 | 5.250103348 | |||
W-RSMA + T 135 °C | #1 | 2.287 | Av = 2.289 SD = 0.003 | 5.456800331 | Av = 5.35 SD = 0.125 |
#2 | 2.292 | 5.250103348 | |||
#3 | 2.285 | 5.539479124 | |||
#4 | 2.289 | 5.374121538 | |||
#5 | 2.292 | 5.250103348 | |||
#6 | 2.287 | 5.456800331 | |||
#7 | 2.293 | 5.208763952 | |||
#8 | 2.292 | 5.250103348 |
Mixture | Production Ta (°C) | ITSd (MPa) EN 12697-23 | ITSw (MPa) EN 12697-23 | ITSR (%) EN 12697-12 |
---|---|---|---|---|
RSMA | 165 | 2.04 | 2.082 | 98.0 |
165 | 1.962 | 1.923 | 98.0 | |
W-RSMA + T | 155 | 1.845 | 1.826 | 99.9 |
145 | 1.886 | 1.843 | 97.7 | |
135 | 1.819 | 1.692 | 93.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallego, J.; Rodríguez-Alloza, A.M.; Saiz-Rodríguez, L. Evaluation of Warm Rubberized Stone Mastic Asphalt Mixtures through the Marshall and Gyratory Compactors. Materials 2020, 13, 265. https://doi.org/10.3390/ma13020265
Gallego J, Rodríguez-Alloza AM, Saiz-Rodríguez L. Evaluation of Warm Rubberized Stone Mastic Asphalt Mixtures through the Marshall and Gyratory Compactors. Materials. 2020; 13(2):265. https://doi.org/10.3390/ma13020265
Chicago/Turabian StyleGallego, Juan, Ana María Rodríguez-Alloza, and Leticia Saiz-Rodríguez. 2020. "Evaluation of Warm Rubberized Stone Mastic Asphalt Mixtures through the Marshall and Gyratory Compactors" Materials 13, no. 2: 265. https://doi.org/10.3390/ma13020265
APA StyleGallego, J., Rodríguez-Alloza, A. M., & Saiz-Rodríguez, L. (2020). Evaluation of Warm Rubberized Stone Mastic Asphalt Mixtures through the Marshall and Gyratory Compactors. Materials, 13(2), 265. https://doi.org/10.3390/ma13020265