Cell-Free Scaffolds as a Monotherapy for Focal Chondral Knee Defects
Abstract
:1. Introduction
2. Optimal Properties of Scaffolds for Chondral Defects
3. Cell-Free Scaffolds
3.1. Hydrogel Scaffolds
3.2. Hydrogel–Synthetic Polymer Hybrid Scaffolds
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Buckwalter, J.A.; Mankin, H.J. Articular cartilage: Tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 1998, 47, 477–486. [Google Scholar] [PubMed]
- Heijink, A.; Gomoll, A.H.; Madry, H.; Drobnič, M.; Filardo, G.; Espregueira-Mendes, J.; Van Dijk, C.N. Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 423–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [Green Version]
- Bhosale, A.M.; Richardson, J.B. Articular cartilage: Structure, injuries and review of management. Br. Med. Bull. 2008, 87, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Medvedeva, E.V.; Grebenik, E.A.; Gornostaeva, S.N.; Telpuhov, V.I.; Lychagin, A.V.; Timashev, P.S.; Chagin, A.S. Repair of Damaged Articular Cartilage: Current Approaches and Future Directions. Int. J. Mol. Sci. 2018, 19, 2366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steadman, J.R.; Rodkey, W.G.; Singleton, S.B.; Briggs, K.K. Microfracture technique forfull-thickness chondral defects: Technique and clinical results. Oper. Tech. Orthop. 1997, 7, 300–304. [Google Scholar] [CrossRef]
- Mankin, H.J. The reaction of articular cartilage to injury and osteoarthritis (first of two parts). N. Engl. J. Med. 1974, 291, 1285–1292. [Google Scholar] [CrossRef]
- Matsusue, Y.; Yamamuro, T.; Hama, H. Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 1993, 9, 318–321. [Google Scholar] [CrossRef]
- Hangody, L.; Füles, P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: Ten years of experimental and clinical experience. J. Bone Jt. Surg. Am. 2003, 85 (Suppl. 2), 25–32. [Google Scholar] [CrossRef]
- Brittberg, M.; Lindahl, A.; Nilsson, A.; Ohlsson, C.; Isaksson, O.; Peterson, L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 1994, 331, 889–895. [Google Scholar] [CrossRef]
- Jaiswal, P.K.; Wong, K.; Khan, W.S. Current cell-based strategies for knee cartilage injuries. J. Stem Cells 2010, 5, 177–185. [Google Scholar] [PubMed]
- Overview | Autologous Chondrocyte Implantation for Treating Symptomatic Articular Cartilage Defects of the Knee | Guidance | NICE. Available online: https://www.nice.org.uk/guidance/ta477 (accessed on 3 December 2019).
- Aae, T.F.; Randsborg, P.H.; Lurås, H.; Årøen, A.; Lian, Ø.B. Microfracture is more cost-effective than autologous chondrocyte implantation: A review of level 1 and level 2 studies with 5 year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1044–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brittberg, M. Autologous chondrocyte transplantation. Clin. Orthop. Relat. Res. 1999, 367, S147–S155. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.D.; Siston, R.A.; Brophy, R.H.; Lattermann, C.; Carey, J.L.; Flanigan, D.C. Failures, re-operations, and complications after autologous chondrocyte implantation—A systematic review. Osteoarthr. Cartil. 2011, 19, 779–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vikingsson, L.; Claessens, B.; Gómez-Tejedor, J.A.; Gallego Ferrer, G.; Gómez Ribelles, J.L. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. J. Mech. Behav. Biomed. Mater. 2015, 48, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Kosuge, D.; Khan, W.S.; Haddad, B.; Marsh, D. Biomaterials and scaffolds in bone and musculoskeletal engineering. Curr. Stem Cell Res. Ther. 2013, 8, 185–191. [Google Scholar] [CrossRef]
- Martinelli, N.; Bonifacini, C.; Longo, U.G.; Marinozzi, A.; Florio, P.; Khan, W.S.; Denaro, V. Current strategies of tissue engineering in talus chondral defects. Curr. Stem Cell Res. Ther. 2013, 8, 217–221. [Google Scholar] [CrossRef]
- Selmi, T.A.S.; Verdonk, P.; Chambat, P.; Dubrana, F.; Potel, J.F.; Barnouin, L.; Neyret, P. Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: Outcome at two years. J. Bone Jt. Surg. Br. 2008, 90, 597–604. [Google Scholar] [CrossRef]
- Schneider, U.; Schmidt-Rohlfing, B.; Gavenis, K.; Maus, U.; Mueller-Rath, R.; Andereya, S. A comparative study of 3 different cartilage repair techniques. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 2145–2152. [Google Scholar] [CrossRef]
- Morales, T.I. Chondrocyte moves: Clever strategies? Osteoarthr. Cartil. 2007, 15, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Wheelton, A.; Mace, J.; Khan, W.S.; Anand, S. Biomaterials and Fabrication to Optimise Scaffold Properties for Musculoskeletal Tissue Engineering. Curr. Stem. Cell Res. Ther. 2016, 11, 578–584. [Google Scholar] [CrossRef] [Green Version]
- Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351. [Google Scholar] [CrossRef]
- Asawa, Y.; Sakamoto, T.; Komura, M.; Watanabe, M.; Nishizawa, S.; Takazawa, Y.; Takato, T.; Hoshi, K. Early Stage Foreign Body Reaction against Biodegradable Polymer Scaffolds Affects Tissue Regeneration during the Autologous Transplantation of Tissue-Engineered Cartilage in the Canine Model. Cell Transplant. 2012, 21, 1431–1442. [Google Scholar] [CrossRef] [Green Version]
- Mabvuure, N.; Hindocha, S.; Khan, W.S. The role of bioreactors in cartilage tissue engineering. Curr. Stem Cell Res. Ther. 2012, 7, 287–292. [Google Scholar] [CrossRef]
- Cohen, Z.A.; McCarthy, D.M.; Kwak, S.D.; Legrand, P.; Fogarasi, F.; Ciaccio, E.J.; Ateshian, G.A. Knee cartilage topography, thickness, and contact areas from MRI: In-vitro calibration and in-vivo measurements. Osteoarthr. Cartil. 1999, 7, 95–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, N.P.; Foster, R.J.; Mow, V.C. Composition and dynamics of articular cartilage: Structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther. 1998, 28, 203–215. [Google Scholar] [CrossRef]
- Nannaparaju, M.; Oragui, E.; Khan, W.S. Designing a “neotissue” using the principles of biology, chemistry and engineering. J. Stem Cells 2012, 7, 113–119. [Google Scholar] [PubMed]
- Allemann, F.; Mizuno, S.; Eid, K.; Yates, K.E.; Zaleske, D.; Glowacki, J. Effects of hyaluronan on engineered articular cartilage extracellular matrix gene expression in 3-dimensional collagen scaffolds. J. Biomed. Mater. Res. 2001, 55, 13–19. [Google Scholar] [CrossRef]
- Grad, S.; Kupcsik, L.; Gorna, K.; Gogolewski, S.; Alini, M. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: Potential and limitations. Biomaterials 2003, 24, 5163–5171. [Google Scholar] [CrossRef]
- Nöth, U.; Rackwitz, L.; Heymer, A.; Weber, M.; Baumann, B.; Steinert, A.; Schütze, N.; Jakob, F.; Eulert, J. Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J. Biomed. Mater. Res. A 2007, 83, 626–635. [Google Scholar] [CrossRef]
- Mafi, P.; Hindocha, S.; Mafi, R.; Khan, W.S. Evaluation of biological protein-based collagen scaffolds in cartilage and musculoskeletal tissue engineering—A systematic review of the literature. Curr. Stem Cell Res. Ther. 2012, 7, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Efe, T.; Theisen, C.; Fuchs-Winkelmann, S.; Stein, T.; Getgood, A.; Rominger, M.B.; Paletta, J.R.J.; Schofer, M.D. Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
- Schüttler, K.F.; Schenker, H.; Theisen, C.; Schofer, M.D.; Getgood, A.; Roessler, P.P.; Struewer, J.; Rominger, M.B.; Efe, T. Use of cell-free collagen type I matrix implants for the treatment of small cartilage defects in the knee: Clinical and magnetic resonance imaging evaluation. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Welsch, G.H.; Trattnig, S.; Domayer, S.; Marlovits, S.; White, L.M.; Mamisch, T.C. Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: A pilot study. Osteoarthr. Cartil. 2009, 17, 1219–1227. [Google Scholar] [PubMed] [Green Version]
- Roessler, P.P.; Pfister, B.; Gesslein, M.; Figiel, J.; Heyse, T.J.; Colcuc, C.; Lorbach, O.; Efe, T.; Schüttler, K.F. Short-term follow up after implantation of a cell-free collagen type I matrix for the treatment of large cartilage defects of the knee. Int. Orthop. 2015, 39, 2473–2479. [Google Scholar] [CrossRef] [PubMed]
- Zak, L.; Albrecht, C.; Wondrasch, B.; Widhalm, H.; Vekszler, G.; Trattnig, S.; Marlovits, S.; Aldrian, S. Results 2 Years After Matrix-Associated Autologous Chondrocyte Transplantation Using the Novocart 3D Scaffold: An Analysis of Clinical and Radiological Data. Am. J. Sports Med. 2014, 42, 1618–1627. [Google Scholar] [CrossRef]
- Schüttler, K.-F.; Götschenberg, A.; Klasan, A.; Stein, T.; Pehl, A.; Roessler, P.P.; Figiel, J.; Heyse, T.J.; Efe, T. Cell-free cartilage repair in large defects of the knee: Increased failure rate 5 years after implantation of a collagen type I scaffold. Arch. Orthop. Trauma Surg. 2019, 139, 99–106. [Google Scholar] [CrossRef]
- Eglin, D.; Grad, S.; Gogolewski, S.; Alini, M. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering. J. Biomed. Mater. Res. A 2010, 92, 393–408. [Google Scholar] [CrossRef]
- Eyrich, D.; Wiese, H.; Maier, G.; Skodacek, D.; Appel, B.; Sarhan, H.; Tessmar, J.; Staudenmaier, R.; Wenzel, M.M.; Goepferich, A.; et al. In vitro and in vivo cartilage engineering using a combination of chondrocyte-seeded long-term stable fibrin gels and polycaprolactone-based polyurethane scaffolds. Tissue Eng. 2007, 13, 2207–2218. [Google Scholar] [CrossRef]
- Liu, H.; MacQueen, L.A.; Usprech, J.F.; Maleki, H.; Sider, K.L.; Doyle, M.G.; Sun, Y.; Simmons, C.A. Microdevice arrays with strain sensors for 3D mechanical stimulation and monitoring of engineered tissues. Biomaterials 2018, 172, 30–40. [Google Scholar] [CrossRef]
- Bekkers, J.E.J.; Tsuchida, A.I.; Malda, J.; Creemers, L.B.; Castelein, R.J.M.; Saris, D.B.F.; Dhert, W.J.A. Quality of scaffold fixation in a human cadaver knee model. Osteoarthr. Cartil. 2010, 18, 266–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, W.; Kawazoe, N.; Lin, X.; Dong, J.; Chen, G. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials 2010, 31, 2141–2152. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.; Kim, K.J.; Park, S.Y.; Huh, J.E.; Kim, H.J.; Yu, W.-R. 3D braid scaffolds for regeneration of articular cartilage. J. Mech. Behav. Biomed. Mater. 2014, 34, 37–46. [Google Scholar] [CrossRef]
- Lee, S.J.; Van Dyke, M.; Atala, A.; Yoo, J.J. Host Cell Mobilization for In Situ Tissue Regeneration. Rejuvenation Res. 2008, 11, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Ko, I.K.; Lee, S.J.; Atala, A.; Yoo, J.J. In situ tissue regeneration through host stem cell recruitment. Exp. Mol. Med. 2013, 45, e57. [Google Scholar] [CrossRef]
- Lebourg, M.; Martínez-Díaz, S.; García-Giralt, N.; Torres-Claramunt, R.; Ribelles, J.G.; Vila-Canet, G.; Monllau, J. Cell-free cartilage engineering approach using hyaluronic acid–polycaprolactone scaffolds: A study in vivo. J. Biomater. Appl. 2014, 28, 1304–1315. [Google Scholar] [CrossRef]
Author(s) | Hydrogel Biomaterial | Type of Study and Sample Size | Type and Size of Defect | Follow-Up | Evaluations | Outcome |
---|---|---|---|---|---|---|
Schneider et al., 2011 | Type I collagen | Preclinical on 18 Goettinger minipigs | 6.3 mm full-thickness chondral defects | 6, 12 and 52 weeks | Nondestructive biomechanical testing and histological evaluation including the O’Driscoll score | As assessed by O’Driscoll scoring and collagen II staining, repair tissue quality of the initially cell-free gel was equal to defects treated by cell-seeded collagen gel implantation after 1 year. After 1 year, a hyaline-like repair tissue in both groups has been created. |
Efe et al., 2012 | Type I collagen | Clinical study on 15 patients (6M, 9F) with a mean age of 26 (range: 19–40) | 11 mm diameter | 6 weeks, and 6, 12 and 24 months after surgery | Clinical: IKDC score, Tegner activity scale and VAS Radiological: MRI (6 weeks), MOCART score (at 6, 12 and 24 months) | The mean VAS after 6 weeks and the mean IKDC values after 6 months were significantly improved from the preoperative values. Significant improvement of the mean MOCART score was observed after 12 months. MRI at 24 months demonstrated complete filling in all cases with a mainly smooth surface, complete integration of the border zone, homogenous structure of the repaired tissue and nearly normal signal intensity. |
Schüttler et al., 2014 | Type I collagen | Clinical study on 15 patients (6M, 9F) with a mean age of 26.4 (range: 19–40) | 11 mm diameter | 6 weeks, and 6, 12, 24, 36 and 48 months after surgery | Clinical: IKDC score, Tegner activity scale and VAS Radiological: MOCART score | The mean VAS improved significantly when compared to the preoperative values. IKDC values increased significantly at final follow-up. After 36 months, a significant improvement was noted in the median Tegner score that lasted at least up to 48 months. The MOCART score improved consistently up to 4 years after implantation, with significant improvements already observed after 12 months. |
Roessler et al., 2015 | Type I collagen (CaReS-1S®®, Arthro Kinetics AG, Krems/Donau, Austria) | Clinical study on 28 patients (17M, 11F) with a mean age of 34.6 years | 3.71 ± 1.93 cm2 | 6, 12 and 24 months after surgery | Clinical: IKDC score, Tegner activity scale, KOOS and VAS Radiological: MRI and MOCART score | Significant improvement in VAS scores after 6 weeks, and in IKDC and Tegner score from 12 months. All subject categories of the KOOS except for symptom (swelling) showed significant improvements. Significant improvements of the mean MOCART score from 12 months. MR images did not yield any signs of infection or synovitis. After 24 months a complete defect filling could be noted in 24 out of 28 cases with a mainly smooth surface, complete integration of the border zone and homogenous structure of the repaired tissue. |
Schüttler et al., 2019 | Type I collagen (CaReS-1S®®, Arthro Kinetics AG, Krems/Donau, Austria) | Clinical study on 28 patients (17M, 11F) with a mean age of 34.6 years | 3.71 ± 1.93 cm2 | 1, 2 and 5 years after surgery | Clinical: IKDC score, Tegner activity scale, KOOS and VAS Radiological: MRI and MOCART score Histological (in cases of revision surgery): ICRS II score | Increased wear of the repair tissue and clinical failure in 18% of cases at 5-year follow-up requiring revision surgery. Histologic evaluation of the repair tissue showed a cartilage-like appearance with no signs of inflammation or cell death but an overall medium tissue quality according to the ICRS II Score.While the remaining patients showed good-to-excellent clinical outcomes, the radiologic appearance of the repair tissue showed a reduction of the MOCART score between the 2- and 5-year follow-up. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwan, H.; Chisari, E.; Khan, W.S. Cell-Free Scaffolds as a Monotherapy for Focal Chondral Knee Defects. Materials 2020, 13, 306. https://doi.org/10.3390/ma13020306
Kwan H, Chisari E, Khan WS. Cell-Free Scaffolds as a Monotherapy for Focal Chondral Knee Defects. Materials. 2020; 13(2):306. https://doi.org/10.3390/ma13020306
Chicago/Turabian StyleKwan, Haowen, Emanuele Chisari, and Wasim S. Khan. 2020. "Cell-Free Scaffolds as a Monotherapy for Focal Chondral Knee Defects" Materials 13, no. 2: 306. https://doi.org/10.3390/ma13020306
APA StyleKwan, H., Chisari, E., & Khan, W. S. (2020). Cell-Free Scaffolds as a Monotherapy for Focal Chondral Knee Defects. Materials, 13(2), 306. https://doi.org/10.3390/ma13020306