Bacterial Cellulose (Komagataeibacter rhaeticus) Biocomposites and Their Cytocompatibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polysaccharides
2.2. Preparation of BC-Based Composites
2.3. Characterization of Composites
2.4. Cell Cultures and In Vitro Tests
3. Results
3.1. Preparation and Swelling Properties of Composites
3.2. Porosity of the Composites
3.3. Mechanical Properties
3.4. X-ray Diffraction Structure
3.5. SEM Morphology of Composites
3.6. Cytocompatibility Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rajwade, J.M.; Paknikar, K.M.; Kumbhar, J.V. Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol. 2015, 99, 2491–2511. [Google Scholar] [CrossRef]
- Zogaj, X.; Nimtz, M.; Rohde, M.; Bokranz, W.; Romling, U. The multicellular morphotypes of salmonella typhimurium and escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 2001, 39, 1452–1463. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Dufresne, A.; Lin, N. Nanocellulose: From Fundamentals to Advanced Materials; Wiley-VCH: Weinheim, Germany, 2019; 504p. [Google Scholar]
- Khan, S.; Ul-Islam, M.; Ullah, M.W.; Israr, M.; Jang, J.H.; Park, J.K. Nano-gold assisted highly conducting and biocompatible bacterial cellulose-pedot:Pss films for biology-device interface applications. Int. J. Biol. Macromol. 2018, 107, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Aljohani, W.; Ullah, M.W.; Zhang, X.; Yang, G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int. J. Biol. Macromol. 2018, 107, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, A.M.E.; Xiao, L.; Ullah, M.W.; Yu, M.; Ouyang, C.; Yang, G. Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics 2018, 8, 533–548. [Google Scholar] [CrossRef]
- Jasim, A.; Ullah, M.W.; Shi, Z.; Lin, X.; Yang, G. Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor. Carbohydr. Polym. 2017, 163, 62–69. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Khan, S.; Ullah, M.W.; Park, J.K. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol. J. 2015, 10, 1847–1861. [Google Scholar] [CrossRef]
- Ahmed, J.; Gultekinoglu, M.; Edirisinghe, M. Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnol. Adv. 2020, 41, 107549. [Google Scholar] [CrossRef]
- Picheth, G.F.; Pirich, C.L.; Sierakowski, M.R.; Woehl, M.A.; Sakakibara, C.N.; de Souza, C.F.; Martin, A.A.; da Silva, R.; de Freitas, R.A. Bacterial cellulose in biomedical applications: A review. Int. J. Biol. Macromol. 2017, 104, 97–106. [Google Scholar] [CrossRef]
- Pang, M.; Huang, Y.; Meng, F.; Zhuang, Y.; Liu, H.; Du, M.; Ma, Q.; Wang, Q.; Chen, Z.; Chen, L.; et al. Application of bacterial cellulose in skin and bone tissue engineering. Eur. Polym. J. 2020, 122, 109365. [Google Scholar] [CrossRef]
- Torgbo, S.; Sukyai, P. Bacterial cellulose-based scaffold materials for bone tissue engineering. Appl. Mater. Today 2018, 11, 34–49. [Google Scholar] [CrossRef]
- Roman, M.; Haring, A.P.; Bertucio, T.J. The growing merits and dwindling limitations of bacterial cellulose-based tissue engineering scaffolds. Curr. Opin. Chem. Eng. 2019, 24, 98–106. [Google Scholar] [CrossRef]
- Carvalho, T.; Guedes, G.; Sousa, F.L.; Freire, C.S.R.; Santos, H.A. Latest advances on bacterial cellulose-based materials for wound healing, delivery systems, and tissue engineering. Biotechnol. J. 2019, 14, e1900059. [Google Scholar] [CrossRef] [PubMed]
- Martinez Avila, H.; Schwarz, S.; Feldmann, E.M.; Mantas, A.; von Bomhard, A.; Gatenholm, P.; Rotter, N. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl. Microbiol. Biotechnol. 2014, 98, 7423–7435. [Google Scholar] [CrossRef] [PubMed]
- Sulaeva, I.; Henniges, U.; Rosenau, T.; Potthast, A. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review. Biotechnol. Adv. 2015, 33, 1547–1571. [Google Scholar] [CrossRef] [PubMed]
- Torgbo, S.; Sukyai, P. Biodegradation and thermal stability of bacterial cellulose as biomaterial: The relevance in biomedical applications. Polym. Degrad. Stab. 2020, 179, 109232. [Google Scholar] [CrossRef]
- Ivanova, L.A.; Ustinovich, K.B.; Khamova, T.V.; Eneyskaya, E.V.; Gorshkova, Y.E.; Tsvigun, N.V.; Burdakov, V.S.; Verlov, N.A.; Zinovev, E.V.; Asadulaev, M.S.; et al. Crystal and supramolecular structure of bacterial cellulose hydrolyzed by cellobiohydrolase from scytalidium candidum 3c: A basis for development of biodegradable wound dressings. Materials 2020, 13, 2087, in press. [Google Scholar] [CrossRef]
- Moniri, M.; Boroumand Moghaddam, A.; Azizi, S.; Abdul Rahim, R.; Bin Ariff, A.; Zuhainis Saad, W.; Navaderi, M.; Mohamad, R. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials 2017, 7, 257. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Yamanaka, S. Effects of oxygen tension in the gaseous phase on production and physical properties of bacterial cellulose formed under static culture conditions. Biosci. Biotechnol. Biochem. 1995, 59, 65–68. [Google Scholar] [CrossRef]
- Hult, E.-L.; Yamanaka, S.; Ishihara, M.; Sugiyama, J. Aggregation of ribbons in bacterial cellulose induced by high pressure incubation. Carbohydr. Polym. 2003, 53, 9–14. [Google Scholar] [CrossRef]
- Kim, J.; Cai, Z.; Lee, H.S.; Choi, G.S.; Lee, D.H.; Jo, C. Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J. Polym. Res. 2011, 18, 739–744. [Google Scholar] [CrossRef]
- Ciechańska, D. Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text. East. Eur. 2004, 12, 69–72. [Google Scholar]
- Krontiras, P.; Gatenholm, P.; Hagg, D.A. Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. J. Biomed. Mater. Res. B. Appl. Biomater. 2015, 103, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, A.; Kakugo, A.; Gong, J.P.; Osada, Y.; Takai, M.; Erata, T.; Kawano, S. High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct. Mater. 2004, 14, 1124–1128. [Google Scholar] [CrossRef]
- Woehl, M.A.; Ono, L.; Riegel Vidotti, I.C.; Wypych, F.; Schreiner, W.H.; Sierakowski, M.R. Bioactive nanocomposites of bacterial cellulose and natural hydrocolloids. J. Mater. Chem. B 2014, 2, 7034–7044. [Google Scholar] [CrossRef]
- Seifert, M.; Hesse, S.; Kabrelian, V.; Klemm, D. Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J. Polym. Sci. A Polym. Chem. 2004, 42, 463–470. [Google Scholar] [CrossRef]
- Yang, J.; Lv, X.; Chen, S.; Li, Z.; Feng, C.; Wang, H.; Xu, Y. In situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility. Cellulose 2014, 21, 1823–1835. [Google Scholar] [CrossRef]
- Arkharova, N.A.; Severin, A.V.; Khripunov, A.K.; Krasheninnikov, S.V.; Tkachenko, A.A.; Orekhov, A.S.; Davydova, G.A.; Rakova, E.V.; Klechkovskaya, V.V. Composite films based on bacterial cellulose and nanocrystals of hydroxyapatite: Morphology, structure, and properties. Polym. Sci. Ser. A 2019, 61, 650–658. [Google Scholar] [CrossRef]
- Kononova, S.V.; Kruchinina, E.V.; Petrova, V.A.; Baklagina, Y.G.; Klechkovskaya, V.V.; Orekhov, A.S.; Vlasova, E.N.; Popova, E.N.; Gubanova, G.N.; Skorik, Y.A. Pervaporation membranes of a simplex type with polyelectrolyte layers of chitosan and sodium hyaluronate. Carbohydr. Polym. 2019, 209, 10–19. [Google Scholar] [CrossRef]
- Kiroshka, V.V.; Petrova, V.A.; Chernyakov, D.D.; Bozhkova, Y.O.; Kiroshka, K.V.; Baklagina, Y.G.; Romanov, D.P.; Kremnev, R.V.; Skorik, Y.A. Influence of chitosan-chitin nanofiber composites on cytoskeleton structure and the proliferation of rat bone marrow stromal cells. J. Mater. Sci. Mater. Med. 2017, 28, 21. [Google Scholar] [CrossRef]
- Petrova, V.A.; Orekhov, A.S.; Chernyakov, D.D.; Baklagina, Y.G.; Romanov, D.P.; Kononova, S.V.; Volod’ko, A.V.; Ermak, I.M.; Klechkovskaya, V.V.; Skorik, Y.A. Preparation and analysis of multilayer composites based on polyelectrolyte complexes. Crystallogr. Rep. 2016, 61, 945–953. [Google Scholar] [CrossRef]
- Buyanov, A.L.; Gofman, I.V.; Revel’skaya, L.G.; Khripunov, A.K.; Tkachenko, A.A. Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly (acrylamide or acrylamide-sodium acrylate) hydrogels. J. Mech Behav Biomed. Mater. 2010, 3, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Romanov, D.P.; Khripunov, A.K.; Baklagina, Y.G.; Severin, A.V.; Lukasheva, N.V.; Tolmachev, D.A.; Lavrent’ev, V.K.; Tkachenko, A.A.; Arkharova, N.A.; Klechkovskaya, V.V. Nanotextures of composites based on the interaction between hydroxyapatite and cellulose gluconacetobacter xylinus. Glass Phys. Chem. 2014, 40, 367–374. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Khan, T.; Park, J.K. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 2012, 88, 596–603. [Google Scholar] [CrossRef]
- Jia, Y.; Huo, M.; Huang, H.; Fu, W.; Wang, Y.; Zhang, J.; Jia, S. Preparation and characterization of bacterial cellulose/hyaluronic acid composites. Proc. Inst. Mech. Eng. Part. N J. Nanoeng. Nanosyst. 2014, 229, 41–48. [Google Scholar]
- Chen, L.; Yan, C.; Zheng, Z. Functional polymer surfaces for controlling cell behaviors. Mater. Today 2017, 31, 38–59. [Google Scholar] [CrossRef]
- Cesarz, Z.; Tamama, K. Spheroid culture of mesenchymal stem cells. Stem Cells Int. 2016, 2016, 9176357. [Google Scholar] [CrossRef] [Green Version]
- Bhang, S.H.; Lee, S.; Shin, J.Y.; Lee, T.J.; Kim, B.S. Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization. Tissue Eng Part. A 2012, 18, 2138–2147. [Google Scholar] [CrossRef]
- Tsai, A.C.; Liu, Y.; Yuan, X.; Ma, T. Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate. Tissue Eng. Part. A 2015, 21, 1705–1719. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.S.; Dai, L.G.; Yen, B.L.; Hsu, S.H. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 2011, 32, 6929–6945. [Google Scholar] [CrossRef]
- Yeh, H.Y.; Liu, B.H.; Sieber, M.; Hsu, S.H. Substrate-dependent gene regulation of self-assembled human msc spheroids on chitosan membranes. BMC Genom. 2014, 15, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrova, V.A.; Chernyakov, D.D.; Poshina, D.N.; Gofman, I.V.; Romanov, D.P.; Mishanin, A.I.; Golovkin, A.S.; Skorik, Y.A. Electrospun bilayer chitosan/hyaluronan material and its compatibility with mesenchymal stem cells. Materials 2019, 12, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartosh, T.J.; Ylostalo, J.H.; Mohammadipoor, A.; Bazhanov, N.; Coble, K.; Claypool, K.; Lee, R.H.; Choi, H.; Prockop, D.J. Aggregation of human mesenchymal stromal cells (mscs) into 3d spheroids enhances their antiinflammatory properties. Proc. Natl. Acad. Sci. USA 2010, 107, 13724–13729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, H.Y.; Liu, B.H.; Hsu, S.H. The calcium-dependent regulation of spheroid formation and cardiomyogenic differentiation for mscs on chitosan membranes. Biomaterials 2012, 33, 8943–8954. [Google Scholar] [CrossRef]
- Lee, E.J.; Park, S.J.; Kang, S.K.; Kim, G.H.; Kang, H.J.; Lee, S.W.; Jeon, H.B.; Kim, H.S. Spherical bullet formation via e-cadherin promotes therapeutic potency of mesenchymal stem cells derived from human umbilical cord blood for myocardial infarction. Mol. Ther. 2012, 20, 1424–1433. [Google Scholar] [CrossRef] [Green Version]
- Mueller-Klieser, W. Multicellular spheroids. A review on cellular aggregates in cancer research. J. Cancer. Res. Clin. Oncol. 1987, 113, 101–122. [Google Scholar] [CrossRef]
- Mueller-Klieser, W. Three-dimensional cell cultures: From molecular mechanisms to clinical applications. Am. J. Physiol. 1997, 273, C1109–C1123. [Google Scholar] [CrossRef]
- Okumura, K.; Nakamura, K.; Hisatomi, Y.; Nagano, K.; Tanaka, Y.; Terada, K.; Sugiyama, T.; Umeyama, K.; Matsumoto, K.; Yamamoto, T.; et al. Salivary gland progenitor cells induced by duct ligation differentiate into hepatic and pancreatic lineages. Hepatology 2003, 38, 104–113. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Sample | Treatment of BC | Swelling in Water, g/g |
original BC | - | 1.9 |
BC–CAR–CS* | 1. immersion into 1% solution of CAR (2 h) 2. immersion into 1% solution of CS (1 h) | 1.5 |
BC–CAR–CS | 1. immersion into 0.5% solution of CAR (2 h) 2. immersion into 1% solution of CS (1 h) | 2.8 |
BC–HA–CS* | 1. immersion into 3% solution of HA (2 h) 2. immersion into 1% solution of CS (1 h) | 16.0 |
BC–HA–CS** | 1. immersion into 0.5% solution of HA (3 days) 2. immersion into 1% solution of CS (1 h) | 5.1 |
BC–HA–CS | 1. immersion into 3% solution of HA (1 h) 2. immersion into 1% solution of CS (30 min) | 14.1 |
BC–ALG–CS | 1. immersion into 2% solution of ALG (2 h) 2. immersion into 1% solution of CS (30 min) | 24.0 |
Sample | BC, % | Anionic polysaccharide, % | CS, % |
---|---|---|---|
BC–ALG–CS | 71 | 26 | 3 |
BC–HA–CS | 62 | 34 | 4 |
BC–CAR–CS | 72 | 20 | 8 |
Parameter | BC–HA–CS | BC–CAR–CS | BC–ALG–CS |
---|---|---|---|
Average logarithmic pore radius, nm | 1.70 | 2.55 | 1.33 |
Average pore radius, nm | 339 | 752 | 472 |
Porosity over weight, cm3/g | 1.81 | 0.943 | 1.52 |
Porosity over volume, cm3/cm3 | 0.585 | 0.445 | 0.606 |
Meso- and macro-pore surface over weight, m2/g | 445 | 91.9 | 392 |
Meso- and macro-pore surface over volume, m2/cm3 | 144 | 43.3 | 156 |
Total pore surface over weight, m2/g | 951 | 91.9 | 1028 |
Total pore surface over volume, m2/cm3 | 308 | 43.3 | 409 |
Sample | Thickness, mm | E10–15%, MPa | E25–30%, MPa | σb, MPa | εb, % |
---|---|---|---|---|---|
wrung-out BC | 1.35 | 1.26 ± 0.24 | 1.47 ± 0.11 | 1.61 ± 0.25 | 54 ± 1 |
original BC | 0.13 | 205 ± 23 | 315 ± 29 | 62 ± 3 | 32 ± 2 |
BC–HA–CS* | 2.10 | 0.35 ± 0.06 | 0.69 ± 0.11 | 0.43 ± 0.07 | 52 ± 2 |
BC–ALG–CS | 2.05 | 0.41 ± 0.07 | 1.17 ± 0.17 | 0.55 ± 0.04 | 61 ± 3 |
BC–CAR–CS | 0.13 | 129 ± 12 | 192 ± 18 | 57 ± 4 | 37 ± 2 |
Sample | Non-Adhered Cells | Adhered Cells | Spheroids | Prevailing Type of Colony |
---|---|---|---|---|
Glass (control) | - | multiple | - | monolayer |
Original BC (control) | multiple | multiple | multiple | spheroids |
BC–CAR–CS | isolated | multiple | multiple | spheroids |
BC–ALG–CS | isolated | multiple | isolated | monolayer |
BC–ALG–CSFD | isolated | multiple | multiple | monolayer + spheroids |
BC–HA–CS | multiple | multiple | multiple | monolayer + spheroids |
Sample | Mean ± SD | Max Longitudinal Size of Spheroids, μm |
---|---|---|
Original BC (control) | 117 ± 50 | 243 |
BC–CAR–CS | 133 ± 48 | 216 |
BC–ALG–CS | 81 ± 14 * | 103 |
BC–ALG–CSFD | 122 ± 64 | 301 |
BC–HA–CS | 85 ± 20 * | 123 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, V.A.; Khripunov, A.K.; Golovkin, A.S.; Mishanin, A.I.; Gofman, I.V.; Romanov, D.P.; Migunova, A.V.; Arkharova, N.A.; Klechkovskaya, V.V.; Skorik, Y.A. Bacterial Cellulose (Komagataeibacter rhaeticus) Biocomposites and Their Cytocompatibility. Materials 2020, 13, 4558. https://doi.org/10.3390/ma13204558
Petrova VA, Khripunov AK, Golovkin AS, Mishanin AI, Gofman IV, Romanov DP, Migunova AV, Arkharova NA, Klechkovskaya VV, Skorik YA. Bacterial Cellulose (Komagataeibacter rhaeticus) Biocomposites and Their Cytocompatibility. Materials. 2020; 13(20):4558. https://doi.org/10.3390/ma13204558
Chicago/Turabian StylePetrova, Valentina A., Albert K. Khripunov, Alexey S. Golovkin, Alexander I. Mishanin, Iosif V. Gofman, Dmitry P. Romanov, Alexandra V. Migunova, Natalia A. Arkharova, Vera V. Klechkovskaya, and Yury A. Skorik. 2020. "Bacterial Cellulose (Komagataeibacter rhaeticus) Biocomposites and Their Cytocompatibility" Materials 13, no. 20: 4558. https://doi.org/10.3390/ma13204558
APA StylePetrova, V. A., Khripunov, A. K., Golovkin, A. S., Mishanin, A. I., Gofman, I. V., Romanov, D. P., Migunova, A. V., Arkharova, N. A., Klechkovskaya, V. V., & Skorik, Y. A. (2020). Bacterial Cellulose (Komagataeibacter rhaeticus) Biocomposites and Their Cytocompatibility. Materials, 13(20), 4558. https://doi.org/10.3390/ma13204558