Visible-Light Activation of Photocatalytic for Reduction of Nitrogen to Ammonia by Introducing Impurity Defect Levels into Nanocrystalline Diamond
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Growth of Nitrogen-Doped and Undoped Polycrystal Diamond
2.2. Growth of Single Crystalline Diamond Film
2.3. The Characterization of Diamond Film
2.4. Photoinitiated Reduction of N2 to NH3
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boukahil, I.; Johnson, P.S.; Himpsel, F.J.; Qiao, R.; Bandy, J.A.; Hamers, R.J. Unoccupied Surface State Induced by Ozone and Ammonia On H-Terminated Diamond Electrodes for Photocatalytic Ammonia Synthesis. J. Vac. Sci. Technol. A Vac. Surf. Films 2017, 35, 04D102. [Google Scholar] [CrossRef]
- Chatterjee, A.; Compton, R.G.; Foord, J.S.; Hiramatsu, M.; Marken, F. Electrochemical and Related Processes at Surface Conductive Diamond–Solution Interfaces. Phys. Status Solidi A 2003, 199, 49–55. [Google Scholar] [CrossRef]
- Choo, H.; Kinumoto, T.; Nose, M.; Miyazaki, K.; Abe, T.; Ogumi, Z. Electrochemical Oxidation of Highly Oriented Pyrolytic Graphite During Potential Cycling in Sulfuric Acid Solution. J. Power Sources 2008, 185, 740–746. [Google Scholar] [CrossRef]
- Wang, H.; Yu, H.; Wang, Z.; Li, Y.; Xu, Y.; Li, X.; Xue, H.; Wang, L. Electrochemical Fabrication of Porous Au Film On Ni Foam for Nitrogen Reduction to Ammonia. Small 2019, 15, 1804769. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, H.; Yuan, X.; Li, H.; Shao, M. Electrochemical Nitrogen Reduction Reaction on Ruthenium. ACS Energy Lett. 2019, 4, 1336–1341. [Google Scholar] [CrossRef]
- James, M.C.; Croot, A.; May, P.W.; Allan, N.L. Negative Electron Affinity from Aluminium on the Diamond (100) Surface: A Theoretical Study. J. Phys. Condens. Matter Inst. Phys. J. 2018, 30, 235002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, D.; Kato, H.; Ri, G.S.; Yamada, T.; Vinod, P.R.; Hwang, D.; Nebel, C.E.; Okushi, H.; Yamasaki, S. Direct Observation of Negative Electron Affinity in Hydrogen-Terminated Diamond Surfaces. Appl. Phys. Lett. 2005, 86, 152103. [Google Scholar] [CrossRef] [Green Version]
- Baumann, P.K.; Nemanich, R.J. Electron Affinity and Schottky Barrier Height of Metal-Diamond (100), (111), (110) Interfaces. J. Appl. Phys. 1998, 83, 2072. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, G.; Ding, L.; Chen, X.; Ding, L.; Wang, H. Efficient Electrocatalytic N2 Fixation with Mxene Under Ambient Conditions. Joule 2019, 3, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, P.; Porter, L.M.; Koeck, F.A.M.; Tang, Y.J.; Nemanich, R.J. Electrical and Photoelectrical Characterization of Undoped and S-Doped Nanocrystalline Diamond Films. J. Appl. Phys. 2008, 103, 084905. [Google Scholar] [CrossRef] [Green Version]
- Nishitani-Gamo, M.; Yasu, E.; Xiao, C.; Kikuchi, Y.; Ushizawa, K.; Sakaguchi, I.; Suzuki, T.; Ando, T. Sulfur-Doped Homoepitaxial (001) Diamond with N-Type Semiconductive Properties. Diam. Relat. Mater. 2000, 9, 941–947. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, L.; Ruther, R.E.; Hamers, R.J. Photo-Illuminated Diamond as a Solid-State Source of Solvated Electrons in Water for Nitrogen Reduction. Nat. Mater. 2013, 12, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shi, R.; Bian, X.; Zhou, C.; Zhao, Y.; Zhang, S.; Wu, F.; Waterhouse, G.I.N.; Wu, L.Z.; Tung, C.H.; et al. Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH3 Production Rates? Adv. Sci. 2019, 6, 1802109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosca, V.; Duca, M.; de Groot, M.T.; Koper, M.T.M. Nitrogen Cycle Electrocatalysis. Chem. Rev. 2009, 109, 2209–2244. [Google Scholar] [CrossRef] [PubMed]
- Shilov, A.E. Catalytic Reduction of Molecular Nitrogen in Solutions. Russ. Chem. Bull. 2003, 52, 2555–2562. [Google Scholar] [CrossRef]
- Wang, L.; Xia, M.; Wang, H.; Huang, K.; Qian, C.; Maravelias, C.T.; Ozin, G.A. Greening Ammonia Toward the Solar Ammonia Refinery. Joule 2018, 2, 1055–1074. [Google Scholar] [CrossRef]
- Sutton, M.A.; Galloway, J.; Erisman, J.W.; Klimont, Z.; Winiwarter, W. How a Century of Ammonia Synthesis Changed the World. Nat. Geosci. 2008, 1, 636–639. [Google Scholar]
- Ogawa, T.; Kitamura, T.; Shibuya, T.; Hoshino, K. Characterization and Material Conditions of Conducting Polymer/Titanium Oxide Hybrid Systems Used for Dinitrogen Fixation Under Ordinary Pressure and Temperature. Electrochem. Commun. 2004, 6, 55–60. [Google Scholar] [CrossRef]
- Bazhenova, T.A.; Shilov, A.E. Nitrogen Fixation in Solution. Coord. Chem. Rev. 1995, 144, 69–145. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Lv, C.; Bai, L.; Liao, J.; Zhai, Y.; Zhang, H.; Chen, G. Amorphous Engineered Cerium Oxides Photocatalyst for Efficient Nitrogen Fixation. Appl. Catal. B Environ. 2020, 264, 118416. [Google Scholar] [CrossRef]
- Georgeaud, V.; Diamand, A.; Borrut, D.; Grange, D.; Coste, M. Electrochemical Treatment of Wastewater Polluted by Nitrate: Selective Reduction to N2 on Boron-Doped Diamond Cathode. Water Sci. Technol. 2011, 63, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Yandulov, D.V.; Schrock, R.R. Reduction of Dinitrogen to Ammonia at a Well-Protected Reaction Site in a Molybdenum Triamidoamine Complex. J. Am. Chem. Soc. 2002, 124, 6252–6253. [Google Scholar] [CrossRef]
- Christianson, J.R.; Zhu, D.; Hamers, R.J.; Schmidt, J.R. Mechanism of N2 Reduction to NH3 by Aqueous Solvated Electrons. J. Phys. Chem. B 2013, 118, 195–203. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, B.; Yu, L.; Bei, Y.; Tang, B. Synergistic Promotion of the Electrochemical Reduction of Nitrogen to Ammonia by Phosphorus and Potassium. Chem. Cat. Chem. 2019, 12, 334–341. [Google Scholar] [CrossRef] [Green Version]
- Laube, C.; Oeckinghaus, T.; Lehnert, J.; Griebel, J.; Knolle, W.; Denisenko, A.; Kahnt, A.; Meijer, J.; Wrachtrup, J.; Abel, B. Controlling the Fluorescence Properties of Nitrogen Vacancy Centers in Nanodiamonds. Nanoscale 2019, 11, 1770–1783. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide. J. Am. Chem. Soc. 2017, 139, 10929–10936. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672. [Google Scholar] [CrossRef]
- Yiming, Z.; Larsson, F.; Larsson, K. Effect of CVD Diamond Growth by Doping with Nitrogen. Theor. Chem. Acc. 2014, 133, 1432. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, Q.; Wu, C.; Zhang, J.; Jin, Y.; MacFarlane, D.R.; Sun, C. Single-Boron Catalysts for Nitrogen Reduction Reaction. J. Am. Chem. Soc. 2019, 141, 2884–2888. [Google Scholar] [CrossRef]
- Zhang, G.; Sewell, C.D.; Zhang, P.; Mi, H.; Lin, Z. Nanostructured Photocatalysts for Nitrogen Fixation. Nano Energy 2020, 71, 104645. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, D.; Chu, K.; Wei, Z.; Liu, W. Metal-Free N, S Co-Doped Graphene for Efficient and Durable Nitrogen Reduction Reaction. J. Mater. Sci. 2019, 54, 9088–9097. [Google Scholar] [CrossRef]
- Li, L.; Tang, C.; Xia, B.; Jin, H.; Zheng, Y.; Qiao, S. Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electrocatalytic Nitrogen Reduction. ACS Catal. 2019, 9, 2902–2908. [Google Scholar] [CrossRef]
- Gustafson, P. An Evaluation of the Thermodynamic Properties and the P, T Phase Diagram of Carbon. Carbon 1986, 24, 169–176. [Google Scholar] [CrossRef]
- Salvatori, S.; Rossi, M.C.; Galluzzi, F. Dynamic Performance of Uv Photodetectors Based On Polycrystalline Diamond. IEEE Trans. Electron. Devices 2000, 47, 1334–1340. [Google Scholar] [CrossRef]
- Salvatori, S.; Rossi, M.C.; Galluzzi, F.; Pace, E.; Ascarelli, P.; Marinelli, M. Performance of Diamond-Based Photoconductive Devices in the Uv Range. Diam. Relat. Mater. 1998, 7, 811–816. [Google Scholar] [CrossRef]
- Zhang, H.; Penn, R.L.; Hamers, R.J.; Banfield, J.F. Enhanced Adsorption of Molecules on Surfaces of Nanocrystalline Particles. J. Phys. Chem. B 1999, 103, 4656–4662. [Google Scholar] [CrossRef]
- Doherty, M.W.; Manson, N.B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollenberg, L.C.L. The Nitrogen-Vacancy Colour Centre in Diamond. Phys. Rep. 2013, 528, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zou, C.; Gong, Z.; Dong, C.; Guo, G.; Sun, F. Subdiffraction Optical Manipulation of the Charge State of Nitrogen Vacancy Center in Diamond. Light Sci. Appl. 2015, 4, e230. [Google Scholar] [CrossRef]
- Choi, S.; Jain, M.; Louie, S.G. Mechanism for Optical Initialization of Spin in NV Center in Diamond. Phys. Rev. B 2012, 86, 041202. [Google Scholar] [CrossRef]
- Suo, N.; Huang, H.; Wu, A.; Cao, G.; Hou, X.; Zhang, G. Porous Boron Doped Diamonds as Metal-Free Catalysts for the Oxygen Reduction Reaction in Alkaline Solution. Appl. Surf. Sci. 2018, 439, 329–335. [Google Scholar] [CrossRef]
- Ghodbane, S.; Ballutaud, D.; Omnès, F.; Agnès, C. Comparison of the Xps Spectra from Homoepitaxial {111}, {100} and Polycrystalline Boron-Doped Diamond Films. Diam. Relat. Mater. 2010, 19, 630–636. [Google Scholar] [CrossRef]
- Hutton, L.A.; Iacobini, J.G.; Bitziou, E.; Channon, R.B.; Newton, M.E.; Macpherson, J.V. Examination of the Factors Affecting the Electrochemical Performance of Oxygen-Terminated Polycrystalline Boron-Doped Diamond Electrodes. Anal. Chem. 2013, 85, 7230–7240. [Google Scholar] [CrossRef] [PubMed]
- Ghodbane, S.; Ballutaud, D.; Deneuville, A.; Baron, C. Influence of Boron Concentration on the XPS Spectra of the (100) Surface of Homoepitaxial Boron-Doped Diamond Films. Phys. Status Solidi A 2006, 203, 3147–3151. [Google Scholar] [CrossRef]
- Takeuchi, D.; Nebel, C.E.; Yamasaki, S. Surface Defect States Analysis on Diamond by Photoelectron Emission Yield Experiments. Diam. Relat. Mater. 2007, 16, 823–825. [Google Scholar] [CrossRef]
- Ristein, J.; Stein, W.; Ley, L. Defect Spectroscopy and Determination of the Electron Diffusion Length in Single Crystal Diamond by Total Photoelectron Yield Spectroscopy. Phys. Rev. Lett. 1997, 78, 1803–1806. [Google Scholar] [CrossRef]
- Yan, D.; Li, H.; Chen, C.; Zou, Y.; Wang, S. Defect Engineering Strategies for Nitrogen Reduction Reactions under Ambient Conditions. Small Methods 2018, 3, 1800331. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, D.; Nathanson, G.M.; Hamers, R.J. Selective Photoelectrochemical Reduction of Aqueous CO2 to CO by Solvated Electrons. Angew. Chem. Int. Ed. 2014, 53, 9746–9750. [Google Scholar] [CrossRef]
- Zhang, L.; Hamers, R.J. Photocatalytic Reduction of CO2 to CO by Diamond Nanoparticles. Diam. Relat. Mater. 2017, 78, 24–30. [Google Scholar] [CrossRef]
- Strother, T.; Knickerbocker, T.; Russell, J.N.; Butler, J.E.; Smith, L.M.; Hamers, R.J. Photochemical Functionalization of Diamond Films. Langmuir 2002, 18, 968–971. [Google Scholar] [CrossRef]
- Sussmann, R.S. (Ed.) CVD Diamond for Electronic Devices and Sensors; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Wan, Y.; Xu, J.; Lv, R. Heterogeneous Electrocatalysts Design for Nitrogen Reduction Reaction under Ambient Conditions. Mater. Today 2019, 27, 69–90. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, J.; Shan, L.; Cheng, N. Voltammetric and Amperometric Study of Electrochemical Activity of Boron-Doped Polycrystalline Diamond Thin Film Electrodes. Anal. Chim. Acta 1996, 333, 125–130. [Google Scholar] [CrossRef]
- Hasija, V.; Raizada, P.; Sudhaik, A.; Sharma, K.; Kumar, A.; Singh, P.; Jonnalagadda, S.B.; Thakur, V.K. Recent Advances in Noble Metal Free Doped Graphitic Carbon Nitride Based Nanohybrids for Photocatalysis of Organic Contaminants in Water: A Review. Appl. Mater. Today 2019, 15, 494–524. [Google Scholar] [CrossRef]
- Ahmed, N.; Khan, G.A.; Wang, R.; Hou, J.; Gong, R.; Yang, L.; Zhang, Y. Correlation and Squeezing for Optical Transistor and Intensity Router Applications in Diamond NV Center. Opt. Lett. 2017, 42, 1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandy, J.A.; Zhu, D.; Hamers, R.J. Photocatalytic Reduction of Nitrogen to Ammonia on Diamond Thin Films Grown on Metallic Substrates. Diam. Relat. Mater. 2016, 64, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.M.; Myung, Y.; Im, H.S.; Seo, Y.S.; Cho, Y.J.; Lee, C.W.; Park, J.; Jee, A.; Lee, M. Nanodiamonds as Photocatalysts for Reduction of Water and Graphene Oxide. Chem. Commun. 2012, 48, 696–698. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Bandy, J.A.; Hamers, R.J. Enhanced Photocatalytic Activity of Diamond Thin Films Using Embedded Ag Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 5395–5403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ji, X.; Ren, X.; Luo, Y.; Shi, X.; Asiri, A.M.; Zheng, B.; Sun, X. Efficient Electrochemical N2 Reduction to NH3 on MoN Nanosheets Array under Ambient Conditions. ACS Sustain. Chem. Eng. 2018, 6, 9550–9554. [Google Scholar] [CrossRef]
- Min, Y.; Zhang, K.; Chen, L.; Chen, Y.; Zhang, Y. Ionic Liquid Assisting Synthesis of Zno/Graphene Heterostructure Photocatalysts with Tunable Photoresponse Properties. Diam. Relat. Mater. 2012, 26, 32–38. [Google Scholar] [CrossRef]
- Ding, J.; Zhong, Q.; Gu, H. Iron-Titanium Dioxide Composite Nanoparticles Prepared with an Energy Effective Method for Efficient Visible-Light-Driven Photocatalytic Nitrogen Reduction to Ammonia. J. Alloys Compd. 2018, 746, 147–152. [Google Scholar] [CrossRef]
- Han, Z.; Choi, C.; Hong, S.; Wu, T.; Soo, Y.; Jung, Y.; Qiu, J.; Sun, Z. Activated TiO2 with Tuned Vacancy for Efficient Electrochemical Nitrogen Reduction. Appl. Catal. B Environ. 2019, 257, 117896. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Toi, S.; Ichikawa, S.; Hirai, T. Photocatalytic NH3 Splitting On TiO2 Particles Decorated with Pt–Au Bimetallic Alloy Nanoparticles. ACS Appl. Nano Mater. 2020, 3, 1612–1620. [Google Scholar] [CrossRef]
- Du, X.; Bai, X.; Xu, L.; Yang, L.; Jin, P. Visible-Light Activation of Persulfate by TiO2/g-C3N4 Photocatalyst Toward Efficient Degradation of Micropollutants. Chem. Eng. J. 2020, 384, 123245. [Google Scholar] [CrossRef]
- Seng, R.X.; Tan, L.; Lee, W.P.C.; Ong, W.; Chai, S. Nitrogen-Doped Carbon Quantum Dots-Decorated 2D Graphitic Carbon Nitride as a Promising Photocatalyst for Environmental Remediation: A Study on the Importance of Hybridization Approach. J. Environ. Manag. 2020, 255, 109936. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Du, X.; Zeng, Y.; Chu, J.; Gong, C.; Huang, J.; Fan, C.; Wang, X.; Xiong, J. Atomic Structure Modification for Electrochemical Nitrogen Reduction to Ammonia. Adv. Energy Mater. 2019, 10, 1903172. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, R.; Liu, Z.; Abbasi, H.N.; Wei, J.; Wang, H. Visible-Light Activation of Photocatalytic for Reduction of Nitrogen to Ammonia by Introducing Impurity Defect Levels into Nanocrystalline Diamond. Materials 2020, 13, 4559. https://doi.org/10.3390/ma13204559
Su R, Liu Z, Abbasi HN, Wei J, Wang H. Visible-Light Activation of Photocatalytic for Reduction of Nitrogen to Ammonia by Introducing Impurity Defect Levels into Nanocrystalline Diamond. Materials. 2020; 13(20):4559. https://doi.org/10.3390/ma13204559
Chicago/Turabian StyleSu, Rui, Zhangcheng Liu, Haris Naeem Abbasi, Jinjia Wei, and Hongxing Wang. 2020. "Visible-Light Activation of Photocatalytic for Reduction of Nitrogen to Ammonia by Introducing Impurity Defect Levels into Nanocrystalline Diamond" Materials 13, no. 20: 4559. https://doi.org/10.3390/ma13204559
APA StyleSu, R., Liu, Z., Abbasi, H. N., Wei, J., & Wang, H. (2020). Visible-Light Activation of Photocatalytic for Reduction of Nitrogen to Ammonia by Introducing Impurity Defect Levels into Nanocrystalline Diamond. Materials, 13(20), 4559. https://doi.org/10.3390/ma13204559