Ag2O and NiO Decorated CuFe2O4 with Enhanced Photocatalytic Performance to Improve the Degradation Efficiency of Methylene Blue
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Synthesis and Characterization of Ag2O-CuFe2O4/NiO
2.3. Photodegradation Experiments
3. Results and Discussion
3.1. Characterization of the Synthesized Ag2O-NiO/CuFe2O4
3.2. MB Degradation
3.3. Enhanced Mechanism of Ag2O-NiO/CuFe2O4 on Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Arshad, H.; Imran, M.; Ashraf, M. Toxic effects of Red-S3B dye on soil microbial activities, wheat yield, and their alleviation by pressmud application. Ecotoxicol. Environ. Saf. 2020, 204, 111030. [Google Scholar] [CrossRef] [PubMed]
- Gebrezgiher, M.; Kiflie, Z. Utilization of cactus peel as biosorbent for the removal of reactive dyes from textile dye effluents. J. Environ. Public Health 2020, 2020, 5383842. [Google Scholar] [CrossRef] [PubMed]
- Al-Baldawi, I.A.; Abdullah, S.R.S.; Anuar, N.; Hasan, H.A. Phytotransformation of methylene blue from water using aquatic plant (Azolla pinnata). Environ. Technol. Innov. 2018, 11, 15–22. [Google Scholar] [CrossRef]
- Sargin, I.; Baran, T.; Arslan, G. Environmental remediation by chitosan-carbon nanotube supported palladium nanoparticles: Conversion of toxic nitroarenes into aromatic amines, degradation of dye pollutants and green synthesis of biaryls. Sep. Purif. Technol. 2020, 247, 116987. [Google Scholar] [CrossRef]
- Liu, L.; Li, S.; An, Y.; Sun, X.; Wu, H.; Li, J.; Chen, X.; Li, H. Hybridization of nanodiamond and CuFe-LDH as heterogeneous photoactivator for visible-light driven photo-fenton reaction: Photocatalytic activity and mechanism. Catalysts 2019, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- Belghit, A.; Merouani, S.; Hamdaoui, O.; Alghyamah, A.; Bouhelassa, M. Influence of processing conditions on the synergism between UV irradiation and chlorine toward the degradation of refractory organic pollutants in UV/chlorine advanced oxidation system. Sci. Total Environ. 2020, 736, 139623. [Google Scholar] [CrossRef]
- Ali, A.; Ing, A.W.C.; Abdullah, W.R.W.; Hamzah, S.; Azaman, F. Preparation of high-performance adsorbent from low-cost agricultural waste (Peanut husk) using full factorial design: Application to dye removal. Biointerface Res. Appl. Chem. 2020, 10, 6619–6628. [Google Scholar]
- Thiruppathi, M.; Leeladevi, K.; Ramalingan, C.; Chen, K.-C.; Nagarajan, E.R. Construction of novel biochar supported copper tungstate nanocomposites: A fruitful divergent catalyst for photocatalysis and electrocatalysis. Mater. Sci. Semicond. Process. 2020, 106, 104766. [Google Scholar] [CrossRef]
- Liu, J.; Tao, Z.; Xie, H.; Zhang, X.; Wang, H.; Xiao, H.; Wang, L. Facial construction of defected NiO/TiO2 with Z-scheme charge transfer for enhanced photocatalytic performance. Catal. Today 2019, 335, 269–277. [Google Scholar] [CrossRef]
- Lyu, J.; Ge, M.; Hu, Z.; Guo, C. One-Pot synthesis of magnetic CuO/Fe2O3/CuFe2O4 nanocomposite to activate persulfate for levofloxacin removal: Investigation of efficiency, mechanism and degradation route. Chem. Eng. J. 2020, 389, 124456. [Google Scholar] [CrossRef]
- Ren, J.; Zhu, Y. Ag2O-decorated electrospun BiVO4 nanofibers with enhanced photocatalytic performance. RSC Adv. 2020, 10, 6114–6120. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Li, H.; Lu, J.; Feng, Y.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Synergy between van der waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2020, 277, 119254. [Google Scholar] [CrossRef]
- Du, X.; Liu, L.; Dong, Z.; Cui, Z.; Sun, X.; Wu, D.; Ma, Z.; Fang, Z.; Liu, Y.; An, Y. Accelerated redox cycles of Fe(III)/Fe(II) and Cu(III)/Cu(II) by photo-induced electron from N-CQDs for enhanced photo-fenton capability of CuFe-LDH. Catalysts 2020, 10, 960. [Google Scholar] [CrossRef]
- Samson, V.A.F.; Bernadsha, S.B.; Mahendiran, M.; Lawrence, K.L.; Madhavan, J.; Raj, M.V.A.; Prathap, S. Impact of calcination temperature on structural, optical, and magnetic properties of spinel CuFe2O4 for enhancing photocatalytic activity. J. Mater. Sci. Mater. Electron. 2020, 31, 6574–6585. [Google Scholar] [CrossRef]
- Li, Z.; Guo, C.; Lyu, J.; Hu, Z.; Ge, M. Tetracycline degradation by persulfate activated with magnetic Cu/CuFe2O4 composite: Efficiency, stability, mechanism and degradation pathway. J. Hazard. Mater. 2019, 373, 85–96. [Google Scholar] [CrossRef]
- Li, J.; Ren, Y.; Ji, F.; Lai, B. Heterogeneous catalytic oxidation for the degradation of p -nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles. Chem. Eng. J. 2017, 324, 63–73. [Google Scholar] [CrossRef]
- Tarek, M.; Rezaul Karim, K.M.; Sarkar, S.M.; Deb, A.; Ong, H.R.; Abdullah, H.; Cheng, C.K.; Rahman Khan, M.M. Hetero-Structure CdS–CuFe2O4 as an efficient visible light active photocatalyst for photoelectrochemical reduction of CO2 to methanol. Int. J. Hydrogen Energy 2019, 44, 26271–26284. [Google Scholar] [CrossRef]
- Karunakaran, C.; Sakthiraadha, S.; Gomathisankar, P.; Vinayagamoorthy, P. Nanostructures and optical, electrical, magnetic, and photocatalytic properties of hydrothermally and sonochemically prepared CuFe2O4/SnO2. RSC Adv. 2013, 3, 16728. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, L.; Liu, X.; Li, B.; Tang, D.; Liu, W.; Qin, W. Synthesis of magnetic core-shell carbon dot@MFe2O4 (M = Mn, Zn and Cu) hybrid materials and their catalytic properties. J. Mater. Chem. A 2016, 4, 4044–4055. [Google Scholar] [CrossRef]
- Guo, W.; Zou, J.; Guo, B.; Xiong, J.; Liu, C.; Xie, Z.; Wu, L. Pd nanoclusters/TiO2(B) nanosheets with surface defects toward rapid photocatalytic dehalogenation of polyhalogenated biphenyls under visible light. Appl. Catal. B Environ. 2020, 277, 119255. [Google Scholar] [CrossRef]
- Bai, X.; Wang, X.; Lu, X.; Liang, Y.; Li, J.; Wu, L.; Li, H.; Hao, Q.; Ni, B.J.; Wang, C. Surface defective g-C3N4-xClx with unique spongy structure by polarization effect for enhanced photocatalytic removal of organic pollutants. J. Hazard. Mater. 2020, 398, 122897. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Yu, S.; Xu, M.; Guo, Y.; Sun, X.; Fan, Y.; Zhang, Z.; Yan, J.; Zhao, W. Enhanced visible light photocatalytic performances of few-layer MoS2@TiO2 hollow spheres heterostructures. Mater. Res. Bull. 2020, 130, 110936. [Google Scholar] [CrossRef]
- Yang, H.; Fan, J.; Zhou, C.; Luo, R.; Liu, H.; Wan, Y.; Zhang, J.; Chen, J.; Wang, G.; Wang, R.; et al. Co3O4@CdS hollow spheres derived from ZIF-67 with a high phenol and dye photodegradation activity. ACS Omega 2020, 5, 17160–17169. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Zhang, X.; Guo, R.; Zhang, H.; Cheng, Q.; Xie, M.; Cheng, X. Persulfate activation by magnetic γ-Fe2O3/Mn3O4 nanocomposites for degradation of organic pollutants. Sep. Purif. Technol. 2019, 210, 335–342. [Google Scholar] [CrossRef]
- Pakzad, K.; Alinezhad, H.; Nasrollahzadeh, M. Green synthesis of Ni@Fe3O4 and CuO nanoparticles using Euphorbia maculata extract as photocatalysts for the degradation of organic pollutants under UV-irradiation. Ceram. Int. 2019, 45, 17173–17182. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Q.; Luo, H.; Huang, R.; Xiao, R.; Liu, Q. Activation of persulfate with 3D urchin-like CoO-CuO microparticles for DBP degradation: A catalytic mechanism study. Sci. Total Environ. 2019, 655, 614–621. [Google Scholar] [CrossRef]
- Mohaghegh, N.; Kamrani, S.; Tasviri, M.; Elahifard, M.; Gholami, M. Nanoporous Ag2O photocatalysts based on copper terephthalate metal-organic frameworks. J. Mater. Sci. 2015, 50, 4536–4546. [Google Scholar] [CrossRef]
- Kannan, K.; Radhika, D.; Nikolova, M.P.; Sadasivuni, K.K.; Mahdizadeh, H.; Verma, U. Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities. Inorg. Chem. Commun. 2020, 113, 107755. [Google Scholar] [CrossRef]
- Taheri-Ledari, R.; Valadi, K.; Gharibi, S.; Maleki, A. Synergistic photocatalytic effect between green LED light and Fe3O4/ZnO-modified natural pumice: A novel cleaner product for degradation of methylene blue. Mater. Res. Bull. 2020, 130, 110946. [Google Scholar] [CrossRef]
- Yang, S.; Xu, D.; Chen, B.; Luo, B.; Yan, X.; Xiao, L.; Shi, W. Synthesis and visible-light-driven photocatalytic activity of p–n heterojunction Ag2O/NaTaO3 nanocubes. Appl. Surf. Sci. 2016, 383, 214–221. [Google Scholar] [CrossRef]
- Cao, Y.; Fang, Y.; Lei, X.Y.; Tan, B.H.; Hu, X.; Liu, B.J.; Chen, Q.L. Fabrication of novel CuFe2O4/MXene hierarchical heterostructures for enhanced photocatalytic degradation of sulfonamides under visible light. J. Hazard. Mater. 2020, 387, 122021. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, B. Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: Its thermodynamics and kinetics. Phys. Chem. Chem. Phys. 2014, 16, 1788–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO 2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Munawar, T.; Iqbal, F.; Yasmeen, S.; Mahmood, K.; Hussain, A. Multi metal oxide NiO-CdO-ZnO nanocomposite-synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceram. Int. 2020, 46, 2421–2437. [Google Scholar] [CrossRef]
- Puga, A.V. Photocatalytic production Photocatalytic production of hydrogen from biomass-derived feedstocks. Coord. Chem. Rev. 2016, 315, 1–66. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Hu, N.; An, Y.; Du, X.; Zhang, X.; Li, Y.; Zeng, Y.; Cui, Z. Ag2O and NiO Decorated CuFe2O4 with Enhanced Photocatalytic Performance to Improve the Degradation Efficiency of Methylene Blue. Materials 2020, 13, 4760. https://doi.org/10.3390/ma13214760
Liu L, Hu N, An Y, Du X, Zhang X, Li Y, Zeng Y, Cui Z. Ag2O and NiO Decorated CuFe2O4 with Enhanced Photocatalytic Performance to Improve the Degradation Efficiency of Methylene Blue. Materials. 2020; 13(21):4760. https://doi.org/10.3390/ma13214760
Chicago/Turabian StyleLiu, Lu, Nan Hu, Yonglei An, Xingyuan Du, Xiao Zhang, Yan Li, Yan Zeng, and Zheng Cui. 2020. "Ag2O and NiO Decorated CuFe2O4 with Enhanced Photocatalytic Performance to Improve the Degradation Efficiency of Methylene Blue" Materials 13, no. 21: 4760. https://doi.org/10.3390/ma13214760
APA StyleLiu, L., Hu, N., An, Y., Du, X., Zhang, X., Li, Y., Zeng, Y., & Cui, Z. (2020). Ag2O and NiO Decorated CuFe2O4 with Enhanced Photocatalytic Performance to Improve the Degradation Efficiency of Methylene Blue. Materials, 13(21), 4760. https://doi.org/10.3390/ma13214760