Bottom Contact Metal Oxide Interface Modification Improving the Efficiency of Organic Light Emitting Diodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Combustion Synthesis and Deposition of Metal Oxides
2.3. Device Fabrication
2.3.1. OLED devices
2.3.2. Single-Carrier OLED Device
2.4. Characterization
3. Results and Discussion
- Type A: ITO/PEDOT:PSS/SY/LiF/Al (reference device);
- Type B: ITO/(Cu-Li):NiCo2O4/SY/LiF/Al;
- Type C: ITO/(Cu-Li):NiCo2O4/PEDOT:PSS/SY/LiF/Al.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burroughes, J.H.; Bradley, D.D.C.; Brown, A.R.; Marks, R.N.; Mackay, K.D.; Friend, R.H.; Burns, P.L.; Holmes, A.B. Light-emitting diodes based on conjugated polymers. Nat. Cell Biol. 1990, 347, 539–541. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Zhang, B.; Xie, Z.; Wong, W.-Y. Towards high-power-efficiency solution-processed OLEDs: Material and device perspectives. Mater. Sci. Eng. R Rep. 2020, 140, 100547. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Feng, J.; Bi, Y.-G.; Yin, D.; Sun, H.-B. Recent Developments in Flexible Organic Light-Emitting Devices. Adv. Mater. Technol. 2018, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Bao, Q.; Braun, S.; Wang, C.; Liu, X.; Fahlman, M. Interfaces of (Ultra)thin Polymer Films in Organic Electronics. Adv. Mater. Interfaces 2018, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Geffroy, B.; Le Roy, P.; Prat, C. Organic light-emitting diode (OLED) technology: Materials, devices and display technologies. Polym. Int. 2006, 55, 572–582. [Google Scholar] [CrossRef]
- Yoon, Y.; Lee, H.; Kim, T.; Kim, K.; Choi, S.; Yoo, H.K.; Friedman, B.; Lee, K. Post-annealing effect on the interface morphology and current efficiency of organic light-emitting diodes. Solid-State Electron. 2013, 79, 45–49. [Google Scholar] [CrossRef]
- Schott, M. A note on image potentials at dielectric interfaces and their possible relevance in organic electronics. Synth. Met. 2013, 184, 48–51. [Google Scholar] [CrossRef]
- Brown, T.M.; Kim, J.S.; Friend, R.H.; Cacialli, F.; Daik, R.; Feast, W.J. Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer. Appl. Phys. Lett. 1999, 75, 1679–1681. [Google Scholar] [CrossRef]
- Choulis, S.A.; Choong, V.-E.; Patwardhan, A.; Mathai, M.K.; So, F. Interface Modification to Improve Hole-Injection Properties in Organic Electronic Devices. Adv. Funct. Mater. 2006, 16, 1075–1080. [Google Scholar] [CrossRef]
- Choulis, S.A.; Choong, V.-E.; Mathai, M.K.; So, F. The effect of interfacial layer on the performance of organic light-emitting diodes. Appl. Phys. Lett. 2005, 87, 113503. [Google Scholar] [CrossRef]
- Brewer, P.J.; Huang, J.; Lane, P.; Demello, A.J.; Bradley, D.D.C.; Demello, J.C. Influence of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) in polymer LEDs. Phys. Rev. B 2006, 74, 115202. [Google Scholar] [CrossRef]
- Lane, P.A.; Brewer, P.J.; Huang, J.; Bradley, D.D.C.; Demello, J.C. Elimination of hole injection barriers by conducting polymer anodes in polyfluorene light-emitting diodes. Phys. Rev. B 2006, 74, 1–7. [Google Scholar] [CrossRef]
- Levermore, P.A.; Jin, R.; Wang, X.; Chen, L.; Bradley, D.D.C.; De Mello, J.C. High efficiency organic light-emitting diodes with PEDOT-based conducting polymer anodes. J. Mater. Chem. 2008, 18, 4414. [Google Scholar] [CrossRef]
- Jin, R.; Levermore, P.A.; Huang, J.; Wang, X.; Bradley, D.D.C.; Demello, J.C. On the use and influence of electron-blocking interlayers in polymer light-emitting diodes. Phys. Chem. Chem. Phys. 2009, 11, 3455–3462. [Google Scholar] [CrossRef] [PubMed]
- Poplavskyy, D.; Su, W.; So, F. Bipolar charge transport, injection, and trapping studies in a model green-emitting polyfluorene copolymer. J. Appl. Phys. 2005, 98, 014501. [Google Scholar] [CrossRef]
- Harding, M.J.; Poplavskyy, D.; Choong, V.-E.; Campbell, A.J.; So, F. Effects of solution-processed polymer interlayers on hole injection and device performance of polymer light-emitting diodes. Org. Electron. 2008, 9, 183–190. [Google Scholar] [CrossRef]
- Choi, E.Y.; Seo, J.H.; Kim, H.M.; Kim, J.H.; Je, J.-T.; Kim, Y.K. Improved efficiency and adhesion property between the PEDOT: PSS and ITO in solution-processed organic light-emitting diodes. In Proceedings of the 2010 3rd International Nanoelectronics Conference (INEC), Hong Kong, China, 3–8 January 2010; pp. 921–922. [Google Scholar] [CrossRef]
- Huang, J.; Miller, P.F.; Wilson, J.S.; De Mello, A.J.; De Mello, J.C.; Bradley, D.D.C. Investigation of the Effects of Doping and Post-Deposition Treatments on the Conductivity, Morphology, and Work Function of Poly(3,4-ethylenedioxythiophene)/Poly(styrene sulfonate) Films. Adv. Funct. Mater. 2005, 15, 290–296. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhong, Y.; Liu, C.; Yin, S.; Zhang, W.; Shi, D. Study on the surface wetting properties of treated indium-tin-oxide anodes for polymer electroluminescent devices. Phys. Status Solidi 2003, 198, 197–203. [Google Scholar] [CrossRef]
- Kim, J.S.; Granström, M.; Friend, R.H.; Johansson, N.; Salaneck, W.; Daik, R.; Feast, W.J.; Cacialli, F. Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. J. Appl. Phys. 1998, 84, 6859–6870. [Google Scholar] [CrossRef]
- Kim, B.-S.; Pham, X.-H.; Jang, Y.-K.; Lee, N.-S.; Kwon, O.-K.; Kwon, Y.-S. UV-Ozone Surface Treatment of Indium-Tin-Oxide in Organic Light Emitting Diodes. J. Korean Phys. Soc. 2007, 50, 1858. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, J.-L.; Kim, K.-B.; Tak, Y.-H. Effect of ultraviolet–ozone treatment of indium–tin–oxide on electrical properties of organic light emitting diodes. J. Appl. Phys. 2004, 95, 2560–2563. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Ho, S.; Chen, Y.; So, F. Passivation of Metal Oxide Surfaces for High-Performance Organic and Hybrid Optoelectronic Devices. Chem. Mater. 2015, 27, 2532–2539. [Google Scholar] [CrossRef]
- Chen, L.; Wang, S.; Li, D.; Fang, Y.; Shen, H.; Li, L.S.; Du, Z.-L. Simultaneous Improvement of Efficiency and Lifetime of Quantum Dot Light-Emitting Diodes with a Bilayer Hole Injection Layer Consisting of PEDOT:PSS and Solution-Processed WO3. ACS Appl. Mater. Interfaces 2018, 10, 24232–24241. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-H.; Huang, J.; Yang, Y. Improved hole-injection contact for top-emitting polymeric diodes. Appl. Phys. Lett. 2007, 90, 173505. [Google Scholar] [CrossRef] [Green Version]
- Youn, J.H.; Baek, S.J.; Kim, H.P.; Nam, D.H.; Lee, Y.; Gil Lee, J.; Jang, J. Improving the lifetime of a polymer light-emitting diode by introducing solution processed tungsten-oxide. J. Mater. Chem. C 2013, 1, 3250–3254. [Google Scholar] [CrossRef]
- Chen, Y.; Hao, L.; Zhang, X.-W.; Zhang, X.; Liu, M.; Zhang, M.; Wang, J.; Lai, W.-Y.; Huang, W. Highly efficient solution-processed phosphorescent organic light-emitting devices with double-stacked hole injection layers. J. Appl. Phys. 2017, 122, 065304. [Google Scholar] [CrossRef]
- Ioakeimidis, A.; Papadas, I.T.; Tsikritzis, D.; Armatas, G.S.; Kennou, S.; Choulis, S.A. Enhanced photovoltaic performance of perovskite solar cells by Co-doped spinel nickel cobaltite hole transporting layer. APL Mater. 2019, 7, 021101. [Google Scholar] [CrossRef] [Green Version]
- Papadas, I.T.; Ioakeimidis, A.; Armatas, G.S.; Choulis, S.A. Low-Temperature Combustion Synthesis of a Spinel NiCo2 O4 Hole Transport Layer for Perovskite Photovoltaics. Adv. Sci. 2018, 5, 1701029. [Google Scholar] [CrossRef]
- Li, Y.-H.; Lu, X.; Wang, R.; Ma, Y.; Duhm, S.; Fung, M.-K. Cu-Doped nickel oxide prepared using a low-temperature combustion method as a hole-injection layer for high-performance OLEDs. J. Mater. Chem. C 2017, 5, 11751–11757. [Google Scholar] [CrossRef]
- Cao, F.; Wang, H.; Shen, P.; Li, X.; Zheng, Y.; Shang, Y.; Zhang, J.; Ning, Z.; Yang, X. High-Efficiency and Stable Quantum Dot Light-Emitting Diodes Enabled by a Solution-Processed Metal-Doped Nickel Oxide Hole Injection Interfacial Layer. Adv. Funct. Mater. 2017, 27. [Google Scholar] [CrossRef]
- Ding, T.; Yang, X.; Bai, L.; Zhao, Y.; Fong, K.E.; Wang, N.; Demir, H.V.; Sun, X.W. Colloidal quantum-dot LEDs with a solution-processed copper oxide (CuO) hole injection layer. Org. Electron. 2015, 26, 245–250. [Google Scholar] [CrossRef]
- Jung, J.W.; Chueh, C.-C.; Jen, A.K.-Y. A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. Adv. Mater. 2015, 27, 7874–7880. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Ji, H.-F.; Sun, Y. The effect of oxygen vacancies on water wettability of a ZnO surface. Phys. Chem. Chem. Phys. 2013, 15, 16557. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.C.; Cheacharoen, R.; Leijtens, T.; McGehee, M.D. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chem. Rev. 2019, 119, 3418–3451. [Google Scholar] [CrossRef] [PubMed]
- Bolink, H.J.; Coronado, E.; Repetto, D.; Sessolo, M.; Barea, E.M.; Bisquert, J.; Garcia-Belmonte, G.; Procházka, J.; Kavan, L. Inverted Solution Processable OLEDs Using a Metal Oxide as an Electron Injection Contact. Adv. Funct. Mater. 2007, 18, 145–150. [Google Scholar] [CrossRef]
- Kabra, D.; Song, M.H.; Wenger, B.; Friend, R.H.; Snaith, H.J. High Efficiency Composite Metal Oxide-Polymer Electroluminescent Devices: A Morphological and Material Based Investigation. Adv. Mater. 2008, 20, 3447–3452. [Google Scholar] [CrossRef]
- Xiao, X.; Zimmerman, J.D.; Lassiter, B.E.; Bergemann, K.J.; Forrest, S.R. A hybrid planar-mixed tetraphenyldibenzoperiflanthene/C70 photovoltaic cell. Appl. Phys. Lett. 2013, 102, 073302. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Han, T.-H.; Cho, H.; Min, S.-Y.; Lee, C.-L.; Lee, T.-W. Polyethylene Imine as an Ideal Interlayer for Highly Efficient Inverted Polymer Light-Emitting Diodes. Adv. Funct. Mater. 2014, 24, 3808–3814. [Google Scholar] [CrossRef]
- Koch, N.; Vollmer, A.; Elschner, A. Influence of water on the work function of conducting poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). Appl. Phys. Lett. 2007, 90, 043512. [Google Scholar] [CrossRef]
- Solomeshch, O.; Medvedev, V.; Mackie, P.R.; Cupertino, D.; Razin, A.; Tessler, N. Electronic Formulations—Photopatterning of Luminescent Conjugated Polymers. Adv. Funct. Mater. 2006, 16, 2095–2102. [Google Scholar] [CrossRef]
- Hassan, M.; Liu, Y.-C.; Hasan, K.U.; Butt, H.; Chang, J.-F.; Friend, R. Highly efficient PLEDs based on poly(9,9-dioctylfluorene) and Super Yellow blend with Cs2CO3 modified cathode. Appl. Mater. Today 2015, 1, 45–51. [Google Scholar] [CrossRef]
- Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 1999, 11, 605–625. [Google Scholar] [CrossRef]
- Choulis, S.A.; Mathai, M.K.; Choong, V.-E.; So, F. Highly efficient organic electroluminescent device with modified cathode. Appl. Phys. Lett. 2006, 88, 203502. [Google Scholar] [CrossRef]
- Bonekamp, J.-B.; Moulé, A.J.; Meerholz, K. Detailed study of the decay mechanism in polymeric OLEDs. In Organic Light-Emitting Materials and Devices IX; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5937, p. 593713. [Google Scholar] [CrossRef]
- Jundale, D.M.; Joshi, P.B.; Sen, S.; Patil, V. Nanocrystalline CuO thin films: Synthesis, microstructural and optoelectronic properties. J. Mater. Sci. Mater. Electron. 2012, 23, 1492–1499. [Google Scholar] [CrossRef]
Device | Voltage (at 10 cd/m2) [V] | Max. Luminance [cd/m2] | Max. Current Efficiency [cd/A] | Max. Power Efficacy [lm/W] |
---|---|---|---|---|
Type A | 2.6 | 9.0 k ± 0.2 k | 4.9 ± 0.1 (5.0) | 4.4 ± 0.1 (4.5) |
Type B | 2.8 | 9.0 k ± 0.5 k | 3.5 ± 0.1 (3.7) | 2.9 ± 0.2 (3.1) |
Type C | 2.6 | 9.0 k ± 0.3 k | 5.4 ± 0.1 (5.6) | 4.8 ± 0.1 (5.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozov, S.M.; Ioakeimidis, A.; Papadas, I.T.; Sun, C.; Chrusou, A.Z.; Bradley, D.D.C.; Choulis, S.A. Bottom Contact Metal Oxide Interface Modification Improving the Efficiency of Organic Light Emitting Diodes. Materials 2020, 13, 5082. https://doi.org/10.3390/ma13225082
Pozov SM, Ioakeimidis A, Papadas IT, Sun C, Chrusou AZ, Bradley DDC, Choulis SA. Bottom Contact Metal Oxide Interface Modification Improving the Efficiency of Organic Light Emitting Diodes. Materials. 2020; 13(22):5082. https://doi.org/10.3390/ma13225082
Chicago/Turabian StylePozov, Sergey M., Apostolos Ioakeimidis, Ioannis T. Papadas, Chen Sun, Alexandra Z. Chrusou, Donal D. C. Bradley, and Stelios A. Choulis. 2020. "Bottom Contact Metal Oxide Interface Modification Improving the Efficiency of Organic Light Emitting Diodes" Materials 13, no. 22: 5082. https://doi.org/10.3390/ma13225082
APA StylePozov, S. M., Ioakeimidis, A., Papadas, I. T., Sun, C., Chrusou, A. Z., Bradley, D. D. C., & Choulis, S. A. (2020). Bottom Contact Metal Oxide Interface Modification Improving the Efficiency of Organic Light Emitting Diodes. Materials, 13(22), 5082. https://doi.org/10.3390/ma13225082