Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials
Abstract
:1. Introduction
2. Various Stimuli
2.1. Surface Treatment
2.2. Rubbing
2.3. Geometric Confinement
2.4. Electric Field Application
2.5. Combinational Methods
3. Applications
3.1. Particle Manipulation
3.2. Switchable Electro-Optic Devices
3.3. Microlens Array
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vijayaraghavan, R.K.; Abraham, S.; Rao, D.S.; Prasad, S.K.; Das, S. Light induced generation of stable blue phase in photoresponsive diphenylbutadiene based mesogen. Chem. Commun. 2010, 46, 2796–2798. [Google Scholar] [CrossRef]
- Eelkema, R.; Pollard, M.M.; Vicario, J.; Katsonis, N.; Ramon, B.S.; Bastiaansen, C.W.; Broer, D.J.; Feringa, B.L. Nanomotor rotates microscale objects. Nature 2006, 440, 163. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.-L.; Duan, W.; Tang, M.-J.; Chen, L.-J.; Liang, X.; Lu, Y.-Q.; Hu, W. Light-driven rotation and pitch tuning of self-organized cholesteric gratings formed in a semi-free film. Polymers 2017, 9, 295. [Google Scholar] [CrossRef] [Green Version]
- Gim, M.-J.; Hur, S.-T.; Park, K.-W.; Lee, M.; Choi, S.-W.; Takezoe, H. Photoisomerization-induced stable liquid crystalline cubic blue phase. Chem. Commun. 2012, 48, 9968–9970. [Google Scholar] [CrossRef]
- Schumers, J.M.; Fustin, C.A.; Gohy, J.F. Light-responsive block copolymers. Macromol. Rapid Commun. 2010, 31, 1588–1607. [Google Scholar] [CrossRef]
- Ahn, S.k.; Ware, T.H.; Lee, K.M.; Tondiglia, V.P.; White, T.J. Photoinduced topographical feature development in blueprinted azobenzene-functionalized liquid crystalline elastomers. Adv. Funct. Mater. 2016, 26, 5819–5826. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Yoon, W.-J.; Kim, D.-Y.; Park, M.; Lee, Y.; Jung, D.; Kim, J.-S.; Yu, Y.-T.; Lee, C.-R.; Jeong, K.-U. Stimuli-responsive liquid crystal physical gels based on the hierarchical superstructures of benzene-1, 3, 5-tricarboxamide macrogelators. Polym. Chem. 2017, 8, 1888–1894. [Google Scholar] [CrossRef]
- Park, W.; Ha, T.; Kim, T.-T.; Zep, A.; Ahn, H.; Shin, T.J.; Sim, K.I.; Jung, T.S.; Kim, J.H.; Pociecha, D. Directed self-assembly of a helical nanofilament liquid crystal phase for use as structural color reflectors. NPG Asia Mater. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Gim, M.-J.; Beller, D.A.; Yoon, D.K. Morphogenesis of liquid crystal topological defects during the nematic-smectic: A phase transition. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mertens, G.; Wehrspohn, R.; Kitzerow, H.-S.; Matthias, S.; Jamois, C.; Gösele, U. Tunable defect mode in a three-dimensional photonic crystal. Appl. Phys. Lett. 2005, 87, 241108. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, S.; Solis, F.J.; de la Cruz, M.O. Nematic liquid crystals on spherical surfaces: Control of defect configurations by temperature, density, and rod shape. Phys. Rev. E 2012, 86, 011709. [Google Scholar] [CrossRef] [Green Version]
- Shtykov, N.; Palto, S.; Umanskii, B.; Rybakov, D.; Simdyankin, I. Director distribution in field-induced undulated structures of cholesteric liquid crystals. Liq. Cryst. 2018, 45, 1408–1414. [Google Scholar] [CrossRef]
- Sayama, S.; Yoshizawa, A. Achiral H-shaped liquid crystals exhibiting an electric-field-induced chiral nematic phase. J. Mater. Chem. C 2019, 7, 6905–6913. [Google Scholar] [CrossRef]
- Kim, M.; Serra, F. Tunable dynamic topological defect pattern formation in nematic liquid crystals. Adv. Opt. Mater. 2019, 8, 1900991. [Google Scholar] [CrossRef]
- You, R.; Choi, Y.S.; Shin, M.J.; Seo, M.K.; Yoon, D.K. Reconfigurable periodic liquid crystal defect array via modulation of electric field. Adv. Mater. Technol. 2019, 4, 1900454. [Google Scholar] [CrossRef]
- Suh, A.; Ahn, H.; Shin, T.J.; Yoon, D.K. Controllable liquid crystal defect arrays induced by an in-plane electric field and their lithographic applications. J. Mater. Chem. C 2019, 7, 1713–1719. [Google Scholar] [CrossRef]
- Gim, M.J.; Yoon, D.K. Orientation control of smectic liquid crystals via a combination method of topographic patterning and in-plane electric field application for a linearly polarized illuminator. ACS Appl. Mater. Interfaces 2016, 8, 27942–27948. [Google Scholar] [CrossRef]
- Gim, M.J.; Turlapati, S.; Debnath, S.; Rao, N.V.; Yoon, D.K. highly polarized fluorescent illumination using liquid crystal phase. ACS Appl. Mater. Interfaces 2016, 8, 3143–3149. [Google Scholar] [CrossRef]
- Challa, P.; Borshch, V.; Parri, O.; Imrie, C.; Sprunt, S.; Gleeson, J.; Lavrentovich, O.; Jakli, A. Twist-bend nematic liquid crystals in high magnetic fields. Phys. Rev. E 2014, 89, 060501. [Google Scholar] [CrossRef] [Green Version]
- Guillamat, P.; Ignés-Mullol, J.; Sagués, F. Control of active liquid crystals with a magnetic field. Proc. Natl. Acad. Sci. USA 2016, 113, 5498–5502. [Google Scholar] [CrossRef] [Green Version]
- Kimura, F.; Kimura, T.; Tamura, M.; Hirai, A.; Ikuno, M.; Horii, F. Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 2005, 21, 2034–2037. [Google Scholar] [CrossRef] [PubMed]
- Barboza, R.; Bortolozzo, U.; Clerc, M.; Residori, S.; Vidal-Henriquez, E. Optical vortex induction via light–matter interaction in liquid-crystal media. Adv. Opt. Photonics 2015, 7, 635–683. [Google Scholar] [CrossRef] [Green Version]
- Brasselet, E. Tunable optical vortex arrays from a single nematic topological defect. Phys. Rev. Lett. 2012, 108, 087801. [Google Scholar] [CrossRef]
- Wei, B.y.; Hu, W.; Ming, Y.; Xu, F.; Rubin, S.; Wang, J.G.; Chigrinov, V.; Lu, Y.Q. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv. Mater. 2014, 26, 1590–1595. [Google Scholar] [CrossRef] [PubMed]
- Crawford, G.P.; Eakin, J.N.; Radcliffe, M.D.; Callan-Jones, A.; Pelcovits, R.A. Liquid-crystal diffraction gratings using polarization holography alignment techniques. J. Appl. Phys. 2005, 98, 123102. [Google Scholar] [CrossRef] [Green Version]
- Ryabchun, A.; Bobrovsky, A.; Stumpe, J.; Shibaev, V. Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch. Adv. Opt. Mater. 2015, 3, 1273–1279. [Google Scholar] [CrossRef]
- Sun, J.; Srivastava, A.K.; Wang, L.; Chigrinov, V.G.; Kwok, H.S. Optically tunable and rewritable diffraction grating with photoaligned liquid crystals. Opt. Lett. 2013, 38, 2342–2344. [Google Scholar] [CrossRef] [Green Version]
- Yoon, D.K.; Choi, M.C.; Kim, Y.H.; Kim, M.W.; Lavrentovich, O.D.; Jung, H.-T. Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals. Nat. Mater. 2007, 6, 866–870. [Google Scholar] [CrossRef]
- Kim, D.S.; Honglawan, A.; Kim, K.; Kim, M.H.; Jeong, S.; Yang, S.; Yoon, D.K. Fabrication of periodic nanoparticle clusters using a soft lithographic template. J. Mater. Chem. C 2015, 3, 4598–4602. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.S.; Kim, Y.H.; Lee, J.S.; Kim, J.H.; Srinivasarao, M.; Jung, H.T. Chiral nematic fluids as masks for lithography. Adv. Mater. 2012, 24, 381–384. [Google Scholar] [CrossRef]
- Yoshida, H.; Asakura, K.; Fukuda, J.; Ozaki, M. Three-dimensional positioning and control of colloidal objects utilizing engineered liquid crystalline defect networks. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ohzono, T.; Fukuda, J. Zigzag line defects and manipulation of colloids in a nematic liquid crystal in micro-wrinkle grooves. Nat. Commun. 2012, 3, 701. [Google Scholar] [CrossRef]
- Shin, M.J.; Gim, M.J.; Yoon, D.K. Directed self-assembly of topological defects of liquid crystals. Langmuir 2018, 34, 2551–2556. [Google Scholar] [CrossRef]
- Kim, D.S.; Cha, Y.J.; Gim, M.-J.; Yoon, D.K. Fast fabrication of sub-200-nm nanogrooves using liquid crystal material. ACS Appl. Mater. Interfaces 2016, 8, 11851–11856. [Google Scholar] [CrossRef] [Green Version]
- Preusse, R.S.; George, E.R.; Aghvami, S.A.; Otchy, T.M.; Gharbi, M.A. Hierarchical assembly of smectic liquid crystal defects at undulated interfaces. Soft Matter 2020. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Shin, T.J.; Cha, Y.J.; Korblova, E.; Walba, D.M.; Clark, N.A.; Lee, S.B.; Yoon, D.K. Alignment of helical nanofilaments on the surfaces of various self-assembled monolayers. Soft Matter 2013, 9, 6185–6191. [Google Scholar] [CrossRef] [Green Version]
- Bramble, J.; Evans, S.; Henderson, J.; Atherton, T.; Smith, N. Observations of focal conic domains in smectic liquid crystals aligned on patterned self-assembled monolayers. Liq. Cryst. 2007, 34, 1137–1143. [Google Scholar] [CrossRef]
- Lavrentovich, O. Filling of space by flexible smectic layers. Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 1987, 151, 417–424. [Google Scholar] [CrossRef]
- Kleman, M.; Lavrentovich, O.D. Liquids with conics. Liq. Cryst. 2009, 36, 1085–1099. [Google Scholar] [CrossRef]
- Arafune, R.; Sakamoto, K.; Ushioda, S. Correlation between the pretilt angle of liquid crystal and the inclination angle of the polyimide backbone structure. Appl. Phys. Lett. 1997, 71, 2755–2757. [Google Scholar] [CrossRef]
- Seo, D.S.; Kobayashi, S.; Nishikawa, M. Study of the pretilt angle for 5CB on rubbed polyimide films containing trifluoromethyl moiety and analysis of the surface atomic concentration of F/C(%) with an electron spectroscope for chemical analysis. Appl. Phys. Lett. 1992, 61, 2392–2394. [Google Scholar] [CrossRef]
- Van Aerle, N.; Barmentlo, M.; Hollering, R. Effect of rubbing on the molecular orientation within polyimide orienting layers of liquid-crystal displays. J. Appl. Phys. 1993, 74, 3111–3120. [Google Scholar] [CrossRef]
- Uchida, T.; Hirano, M.; Sakai, H. Director orientation of a ferroelectric liquid crystal on substrates with rubbing treatment: The effect of surface anchoring strength. Liq. Cryst. 1989, 5, 1127–1137. [Google Scholar] [CrossRef]
- Ok, J.M.; Kim, Y.H.; Jeong, H.S.; Yoo, H.-W.; Kim, J.H.; Srinivasarao, M.; Jung, H.-T. Control of periodic defect arrays of 8CB (4′-n-octyl-4-cyano-biphenyl) liquid crystals by multi-directional rubbing. Soft Matter 2013, 9, 10135. [Google Scholar] [CrossRef]
- Wu, S.B.; Ma, L.L.; Chen, P.; Cao, H.M.; Ge, S.J.; Yuan, R.; Hu, W.; Lu, Y.Q. Smectic defect engineering enabled by programmable photoalignment. Adv. Opt. Mater. 2020. [Google Scholar] [CrossRef]
- Ma, L.L.; Tang, M.J.; Hu, W.; Cui, Z.Q.; Ge, S.J.; Chen, P.; Chen, L.J.; Qian, H.; Chi, L.F.; Lu, Y.Q. Smectic layer origami via preprogrammed photo-alignment. Adv. Mater. 2017, 29, 1606671. [Google Scholar] [CrossRef]
- Chigrinov, V.; Sun, J.; Wang, X. Photoaligning and photopatterning: New LC technology. Crystals 2020, 10, 323. [Google Scholar] [CrossRef] [Green Version]
- Shteyner, E.A.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.-S.; Afanasyev, A.D. Submicron-scale liquid crystal photo-alignment. Soft Matter 2013, 9, 5160–5165. [Google Scholar] [CrossRef]
- Yaroshchuk, O.; Reznikov, Y. Photoalignment of liquid crystals: Basics and current trends. J. Mater. Chem. 2012, 22, 286–300. [Google Scholar] [CrossRef]
- Choi, M.C.; Pfohl, T.; Wen, Z.; Li, Y.; Kim, M.W.; Israelachvili, J.N.; Safinya, C.R. Ordered patterns of liquid crystal toroidal defects by microchannel confinement. Proc. Natl. Acad. Sci. USA 2004, 101, 17340–17344. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Yoon, D.K.; Jeong, H.S.; Lavrentovich, O.D.; Jung, H.T. Smectic liquid crystal defects for self-assembling of building blocks and their lithographic applications. Adv. Funct. Mater. 2011, 21, 610–627. [Google Scholar] [CrossRef]
- Shojaei-Zadeh, S.; Anna, S.L. Role of surface anchoring and geometric confinement on focal conic textures in smectic-A liquid crystals. Langmuir 2006, 22, 9986–9993. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, Y.H.; Jeong, H.S.; Youn, E.K.; Jung, H.-T. Highly ordered defect arrays of 8CB (4′-n-octyl-4-cyano-biphenyl) liquid crystal via template-assisted self-assembly. J. Mater. Chem. 2011, 21, 18381. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, D.K.; Choi, M.-C.; Jeong, H.S.; Kim, M.W.; Lavrentovich, O.D.; Jung, H.-T. Confined self-assembly of toric focal conic domains (the effects of confined geometry on the feature size of toric focal conic domains). Langmuir 2009, 25, 1685–1691. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoon, D.K.; Jung, H.-T. Recent advances in the fabrication of nanotemplates from supramolecular self-organization. J. Mater. Chem. 2009, 19, 9091–9102. [Google Scholar] [CrossRef]
- Darmon, A.; Benzaquen, M.; Čopar, S.; Dauchot, O.; Lopez-Leon, T. Topological defects in cholesteric liquid crystal shells. Soft Matter 2016, 12, 9280–9288. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Afghah, S.; Xiang, J.; Lavrentovich, O.D.; Selinger, R.L.; Wei, Q.-H. Cholesteric liquid crystals in rectangular microchannels: Skyrmions and stripes. Soft Matter 2016, 12, 6312–6320. [Google Scholar] [CrossRef]
- Całus, S.; Busch, M.; Kityk, A.V.; Piecek, W.; Huber, P. Chiral phases of a confined cholesteric liquid crystal: Anchoring-dependent helical and smectic self-assembly in nanochannels. J. Phys. Chem. C 2016, 120, 11727–11738. [Google Scholar] [CrossRef]
- Xia, Y.; Serra, F.; Kamien, R.D.; Stebe, K.J.; Yang, S. Direct mapping of local director field of nematic liquid crystals at the nanoscale. Proc. Natl. Acad. Sci. USA 2015, 112, 15291–15296. [Google Scholar] [CrossRef] [Green Version]
- Gim, M.-J.; Kim, H.; Chen, D.; Shen, Y.; Yi, Y.; Korblova, E.; Walba, D.M.; Clark, N.A.; Yoon, D.K. Airflow-aligned helical nanofilament (B4) phase in topographic confinement. Sci. Rep. 2016, 6, 29111. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Gim, M.-J.; Jung, H.-T.; Yoon, D.K. Periodic arrays of liquid crystalline torons in microchannels. RSC Adv. 2015, 5, 19279–19283. [Google Scholar] [CrossRef]
- Tran, L.; Lavrentovich, M.O.; Beller, D.A.; Li, N.; Stebe, K.J.; Kamien, R.D. Lassoing saddle splay and the geometrical control of topological defects. Proc. Natl. Acad. Sci. USA 2016, 113, 7106–7111. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Čopar, S.; Tkalec, U.; Yoon, D.K. Mosaics of topological defects in micropatterned liquid crystal textures. Sci. Adv. 2018, 4, eaau8064. [Google Scholar] [CrossRef] [Green Version]
- Agha, H.; Bahr, C. Nematic line defects in microfluidic channels: Wedge, twist and zigzag disclinations. Soft Matter 2018, 14, 653–664. [Google Scholar] [CrossRef] [Green Version]
- Yoon, D.K.; Deb, R.; Chen, D.; Körblova, E.; Shao, R.; Ishikawa, K.; Rao, N.V.; Walba, D.M.; Smalyukh, I.I.; Clark, N.A. Organization of the polarization splay modulated smectic liquid crystal phase by topographic confinement. Proc. Natl. Acad. Sci. USA 2010, 107, 21311–21315. [Google Scholar] [CrossRef] [Green Version]
- Madhusudana, N.; Pratibha, R.J.M.C.; Crystals, L. Elasticity and orientational order in some cyanobiphenyls: Part IV. Reanalysis of the data. Mol. Cryst. Liq. Cryst. 1982, 89, 249–257. [Google Scholar] [CrossRef]
- Xia, Y.; DeBenedictis, A.A.; Kim, D.S.; Chen, S.; Kim, S.-U.; Cleaver, D.J.; Atherton, T.J.; Yang, S. Programming emergent symmetries with saddle-splay elasticity. Nat. Commun. 2019, 10, 1–9. [Google Scholar] [CrossRef]
- Sørensen, B.E. A revised Michel-Lévy interference colour chart based on first-principles calculations. Eur. J. Mineral. 2012, 25, 5–10. [Google Scholar] [CrossRef]
- Wen, C.-H.; Wu, S.-T. Dielectric heating effects of dual-frequency liquid crystals. Appl. Phys. Lett. 2005, 86, 231104. [Google Scholar] [CrossRef]
- Schadt, M. Dielectric heating and relaxations in smectic a liquid crystals. Phys. Lett. A 1981, 81, 355–358. [Google Scholar] [CrossRef]
- Sasaki, Y.; Jampani, V.; Tanaka, C.; Sakurai, N.; Sakane, S.; Le, K.V.; Araoka, F.; Orihara, H. Large-scale self-organization of reconfigurable topological defect networks in nematic liquid crystals. Nat. Commun. 2016, 7, 1–13. [Google Scholar] [CrossRef]
- Pommella, A.; Caserta, S.; Guido, S. Dynamic flow behaviour of surfactant vesicles under shear flow: Role of a multilamellar microstructure. Soft Matter 2013, 9, 7545–7552. [Google Scholar] [CrossRef]
- Meyer, R.B. Piezoelectric effects in liquid crystals. Phys. Rev. Lett. 1969, 22, 918. [Google Scholar] [CrossRef]
- Xu, D.; Chen, Y.; Liu, Y.; Wu, S.-T. Refraction effect in an in-plane-switching blue phase liquid crystal cell. Opt. Express 2013, 21, 24721–24735. [Google Scholar] [CrossRef]
- Ok, J.M.; Kim, Y.H.; Lee, T.Y.; Yoo, H.-W.; Kwon, K.; Jung, W.-B.; Kim, S.-H.; Jung, H.-T. Controlling smectic liquid crystal defect patterns by physical stamping-assisted domain separation and their use as templates for quantum dot cluster arrays. Langmuir 2016, 32, 13418–13426. [Google Scholar] [CrossRef]
- Coursault, D.; Grand, J.; Zappone, B.; Ayeb, H.; Lévi, G.; Félidj, N.; Lacaze, E. Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv. Mater. 2012, 24, 1461–1465. [Google Scholar] [CrossRef] [Green Version]
- Mundoor, H.; Cruz-Colón, E.M.; Park, S.; Liu, Q.; Smalyukh, I.I.; Van De Lagemaat, J. Control of quantum dot emission by colloidal plasmonic pyramids in a liquid crystal. Opt. Express 2020, 28, 5459–5469. [Google Scholar] [CrossRef]
- Mundoor, H.; Sheetah, G.H.; Park, S.; Ackerman, P.J.; Smalyukh, I.I.; van de Lagemaat, J. Tuning and switching a plasmonic quantum dot “sandwich” in a nematic line defect. ACS Nano 2018, 12, 2580–2590. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Honglawan, A.; Yang, S.; Yoon, D.K. Arrangement and SERS Applications of Nanoparticle Clusters Using Liquid Crystalline Template. ACS Appl. Mater. Interfaces 2017, 9, 7787–7792. [Google Scholar] [CrossRef]
- Pancharatnam, S. Generalized theory of interference and its applications. Proc. Indian Acad. Sci. Sect. A 1956, 44, 398–417. [Google Scholar] [CrossRef]
- Brasselet, E.; Murazawa, N.; Misawa, H.; Juodkazis, S. Optical vortices from liquid crystal droplets. Phys. Rev. Lett. 2009, 103, 103903. [Google Scholar] [CrossRef] [Green Version]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.; Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185. [Google Scholar] [CrossRef]
- Loussert, C.; Kushnir, K.; Brasselet, E. Q-plates micro-arrays for parallel processing of the photon orbital angular momentum. Appl. Phys. Lett. 2014, 105, 121108. [Google Scholar] [CrossRef] [Green Version]
- Marrucci, L.; Manzo, C.; Paparo, D. Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation. Appl. Phys. Lett. 2006, 88, 221102. [Google Scholar] [CrossRef] [Green Version]
- Carroll, T. Liquid-Crystal Diffraction Grating. J. Appl. Phys. 1972, 43, 767–770. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, Y.H.; Jeong, H.S.; Srinivasarao, M.; Hudson, S.D.; Jung, H.-T. Thermally responsive microlens arrays fabricated with the use of defect arrays in a smectic liquid crystal. RSC Adv. 2012, 2, 6729. [Google Scholar] [CrossRef]
- Kato, T.; Uchida, J.; Ichikawa, T.; Sakamoto, T. Functional liquid crystals towards the next generation of materials. Angew. Chem. Int. Ed. Engl. 2018, 57, 4355–4371. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, M.; Kelly, S.M. Liquid crystals for charge transport, luminescence, and photonics. Adv. Mater. 2003, 15, 1135–1146. [Google Scholar] [CrossRef]
- Mirri, G.; Jampani, V.S.R.; Cordoyiannis, G.; Umek, P.; Kouwer, P.H.; Muševič, I. Stabilisation of 2D colloidal assemblies by polymerisation of liquid crystalline matrices for photonic applications. Soft Matter 2014, 10, 5797–5803. [Google Scholar] [CrossRef]
- Bukusoglu, E.; Bedolla Pantoja, M.; Mushenheim, P.C.; Wang, X.; Abbott, N.L. Design of responsive and active (soft) materials using liquid crystals. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 163–196. [Google Scholar] [CrossRef]
- Barboza, R.; Bortolozzo, U.; Assanto, G.; Vidal-Henriquez, E.; Clerc, M.G.; Residori, S. Harnessing optical vortex lattices in nematic liquid crystals. Phys. Rev. Lett. 2013, 111, 093902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, F.; Gharbi, M.A.; Luo, Y.; Liu, I.B.; Bade, N.D.; Kamien, R.D.; Yang, S.; Stebe, K.J. Curvature-driven, one-step assembly of reconfigurable smectic liquid crystal “compound eye” lenses. Adv. Opt. Mater. 2015, 3, 287–1292. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, M.J.; Yoon, D.K. Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials. Materials 2020, 13, 5466. https://doi.org/10.3390/ma13235466
Shin MJ, Yoon DK. Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials. Materials. 2020; 13(23):5466. https://doi.org/10.3390/ma13235466
Chicago/Turabian StyleShin, Min Jeong, and Dong Ki Yoon. 2020. "Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials" Materials 13, no. 23: 5466. https://doi.org/10.3390/ma13235466
APA StyleShin, M. J., & Yoon, D. K. (2020). Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials. Materials, 13(23), 5466. https://doi.org/10.3390/ma13235466