Advances in the Deformation and Failure of Concrete Pavement under Coupling Action of Moisture, Temperature, and Wheel Load
Abstract
:1. Introduction
2. The Basic Model of The Multiple Physical Fields of Concrete
2.1. Moisture Diffusion Model
2.2. Heat Transfer Model
2.3. Microprestress-Consolidation Theory
3. Research on the Fatigue Effect of Concrete Pavement
4. Research on Deformation and Failure of Concrete Pavement or Airport Pavement
5. Research on Deformation and Failure of Concrete (Except for Airport Pavement and Highway Pavement) under the Action of Moisture-Heat-Force
6. Numerical Simulation Method of Hygro-Thermal-Mechanical Coupling Deformation of Concrete
6.1. Heat and Mass Transfer in Porous Media of Phenomenological Thermodynamic Method
6.2. Numerical Analysis Method Based on Luikov’s Coupled Heat and Mass Transfer Equation
6.3. Finite Element Analysis Method
6.4. Application of Multiphysics Coupling Analysis Software
7. Conclusions and Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cai, Z.; LI, S.; Xu, X.; Wu, C. Comparative study on construction technology of airport road surface and cement concrete pavement. Highw. Eng. 2020, 45, 167–174. (In Chinese) [Google Scholar]
- Li, M.; Xu, W.; Wang, Y.J.; Tian, Q.; Liu, J.P. Shrinkage crack inhibiting of cast in situ tunnel concrete by double regulation on temperature and deformation of concrete at early age. Constr. Build. Mater. 2020, 240, 117834. [Google Scholar] [CrossRef]
- Xin, J.D.; Zhang, G.X.; Liu, Y.; Wang, Z.H.; Wu, Z. Effect of temperature history and restraint degree on cracking behavior of early-age concrete. Constr. Build. Mater. 2018, 192, 381–390. [Google Scholar] [CrossRef]
- Zhu, H.; Hu, Y.; Li, Q.B.; Ma, R. Restrained cracking failure behavior of concrete due to temperature and shrinkage. Constr. Build. Mater. 2020, 244, 10. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, K. Quasi-Liquid Layer on Ice and Its Effect on the Confined Freezing of Porous Materials. Crystals 2019, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.P. Multi-physicalfield coupling simulation of hygro-thermal deformation of concrete. J. Southeast Univ. Sci. 2013, 43, 582–587. (In Chinese) [Google Scholar]
- Bocciarelli, M.; Ranzi, G. Identification of the hygro-thermo-chemical-mechanical model parameters of concrete through inverse analysis. Constr. Build. Mater. 2018, 162, 202–214. [Google Scholar] [CrossRef]
- Isgor, O.B.; Razaqpur, A.G. Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures. Cem. Concr. Compos. 2004, 26, 57–73. [Google Scholar] [CrossRef]
- Kim, J.-K.; Lee, C.-S. Prediction of differential drying shrinkage in concrete. Cem. Concr. Res. 1998, 28, 985–994. [Google Scholar] [CrossRef]
- Wan, L.; Wendner, R.; Liang, B.; Cusatis, G. Analysis of the behavior of ultra high performance concrete at early age. Cem. Concr. Compos. 2016, 74, 120–135. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.T.; Jiang, K.D.; Yang, R.; Tang, Y.M.; Liu, J.P. Experimental and theoretical analysis on coupled effect of hydration, temperature and humidity in early-age cement-based materials. Int. J. Heat Mass Transf. 2020, 146, 118784. [Google Scholar] [CrossRef]
- Chen, D.P. Study on Numerical Simulation of Hygro-Thermal Deformation of Concrete Based on Heat and Moisture Transfer in Porous Medium and Its Application. Ph.D. Thesis, Southeast University, Nanjing, China, October 2007. [Google Scholar]
- Bažant, Z.P.; Fellow, A.S.C.E.; Prasannan, S.; Member, S. Solidification Theory for Concrete Creep. I: Formulation. J. Eng. Mech. 1989, 115, 1691–1703. [Google Scholar] [CrossRef] [Green Version]
- Bažant, Z.P.; Hauggaard, A.B.; Baweja, S.; Ulm, F.J. Microprestress-Solidification Theory for Concrete Creep. I: Aging and Drying Effects. J. Eng. Mech. 1997, 123, 1188–1194. [Google Scholar] [CrossRef] [Green Version]
- Baant, Z.P.; Baweja, S. Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures: Model B3. Mater. Struct. 1995, 28, 357–365. [Google Scholar]
- Yu, P.; Duan, Y.H.; Fan, Q.X.; Tang, S.W. Improved MPS model for concrete creep under variable humidity and temperature. Constr. Build. Mater. 2020, 243, 118183. [Google Scholar] [CrossRef]
- Roesler, J.R.; Hiller, J.E.; Littleton, P.C. Large-scale airfield concrete slab fatigue tests. IJCP 2005, 1, 66–87. [Google Scholar]
- Long, X.; Cai, L.; Li, W. RSM-based assessment of pavement concrete mechanical properties under joint action of corrosion, fatigue, and fiber content. Constr. Build. Mater. 2019, 197, 406–420. [Google Scholar] [CrossRef]
- Gong, F.; Ueda, T.; Wang, Y.; Zhang, D.; Wang, Z. Mesoscale simulation of fatigue behavior of concrete materials damaged by freeze-thaw cycles. Constr. Build. Mater. 2017, 144, 702–716. [Google Scholar] [CrossRef] [Green Version]
- Alsaif, A.; Garcia, R.; Figueiredo, F.P.; Neocleous, K.; Christofe, A.; Guadagnini, M.; Pilakoutas, K. Fatigue performance of flexible steel fibre reinforced rubberised concrete pavements. Eng. Struct. 2019, 193, 170–183. [Google Scholar] [CrossRef]
- Graeff, A.G.; Pilakoutas, K.; Neocleous, K.; Peres, M.V.N.N. Fatigue resistance and cracking mechanism of concrete pavements reinforced with recycled steel fibres recovered from post-consumer tyres. Eng. Struct. 2012, 45, 385–395. [Google Scholar] [CrossRef]
- Pacheco-Torres, R.; Cerro-Prada, E.; Escolano, F.; Varela, F. Fatigue performance of waste rubber concrete for rigid road pavements. Constr. Build. Mater. 2018, 176, 539–548. [Google Scholar] [CrossRef]
- Xiao, J.; Li, H.; Yang, Z. Fatigue behavior of recycled aggregate concrete under compression and bending cyclic loadings. Constr. Build. Mater. 2013, 38, 681–688. [Google Scholar] [CrossRef]
- Shadravan, S.; Ramseyer, C.; Kang, T.H.K. A long term restrained shrinkage study of concrete slabs on ground. Eng. Struct. 2015, 102, 258–265. [Google Scholar] [CrossRef]
- Maekawa, K.; Chijiwa, N.; Ishida, T. Long-term deformational simulation of PC bridges based on the thermo-hygro model of micro-pores in cementitious composites. Cem. Concr. Res. 2011, 41, 1310–1319. [Google Scholar] [CrossRef]
- Ye, D. Early-Age Concrete Temperature and Moisture Relative to Curing Effectiveness and Projected Effects on Selected Aspects of Slab Behavior; Texas A&M University: College Station, TX, USA, 2007. [Google Scholar]
- Hiller, J.E.; Roesler, J.R. Simplified Nonlinear Temperature Curling Analysis for Jointed Concrete Pavements. J. Transp. Eng. 2010, 136, 654–663. [Google Scholar] [CrossRef]
- Simonova, A. Evaluation of Functional Safety of Cement Concrete and Composite Pavements Exposed to Weather Conditions. Procedia.Trans. Res. 2017, 20, 618–623. [Google Scholar] [CrossRef]
- Choi, S.; Na, B.-U.; Won, M.C. Mesoscale analysis of continuously reinforced concrete pavement behavior subjected to environmental loading. Constr. Build. Mater. 2016, 112, 447–456. [Google Scholar] [CrossRef]
- Yang, X.; Shen, A.; Guo, Y.; Zhou, S.; He, T. Deterioration mechanism of interface transition zone of concrete pavement under fatigue load and freeze-thaw coupling in cold climatic areas. Constr. Build. Mater. 2018, 160, 588–597. [Google Scholar] [CrossRef]
- Mateos, A.; Harvey, J.; Bolander, J.; Wu, R.; Paniagua, J.; Paniagua, F. Structural response of concrete pavement slabs under hygrothermal actions. Constr. Build. Mater. 2020, 243, 118261. [Google Scholar] [CrossRef]
- Huang, K.; Zollinger, D.G.; Shi, X.; Sun, P. A developed method of analyzing temperature and moisture profiles in rigid pavement slabs. Constr. Build. Mater. 2017, 151, 782–788. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, Z.; Qin, X.; Shen, A.; Zhou, S.; Lyu, Z. Evolution mechanism of microscopic pores in pavement concrete under multi-field coupling. Constr. Build. Mater. 2018, 173, 381–393. [Google Scholar] [CrossRef]
- Dhawale, A.W.; Vishwanath, M. Comparative study of wheel load stress and warping stress on__concrete pavements. J. Int. Civ. Struct. Environ. Inf. Eng. Res. Dev. 2014, 4, 9–13. [Google Scholar]
- Yu, H.; Khazanovich, L.; Darter, M.; Ardani, A. Analysis of Concrete Pavement Responses to Temperature and Wheel Loads Measured from Intrumented Slabs. J. Trans. Res. Rec. Board 1998, 1639, 94–101. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.K.; Ye, D.; Zollinger, D.G. Moistrue-Related Cracking Effects on Hydrating Concrete Pavement; Texas Transportation Institute: College Station, TX, USA, 2006. [Google Scholar]
- William, G.W.; Shoukry, S.N. 3D Finite Element Analysis of Temperature-Induced Stresses in Dowel Jointed Concrete Pavements. Int. J. Geomech. 2001, 1, 291–307. [Google Scholar] [CrossRef]
- Ming, T.Z.; Kang, Y.Z. Thermal stress in two-layer concrete slab due to restraint of interface. J. Traffic. Transp. Eng. 2001, 1, 25–28. (In Chinese) [Google Scholar]
- Jun, W.U.; Liang, L.I.; Xiu-Li, D.U. Experiment and numerical simulation on impact resistance of composite pavement slab. J. Archi. Civ. Eng. 2018, 35, 71–78. (In Chinese) [Google Scholar]
- Jun, W.U.; Liang, L.I.; Xiuli, D.; Zhongxian, L. Experiment on dynamic properties of multi-layer pavement system under impact load. J. Tianjin Univ. Sci. 2017, 50, 1321–1328. (In Chinese) [Google Scholar]
- Fangran, Z.; Xinchen, L. Study on airport concrete pavement damage law of hot wind snow removal. Concrete 2015, 4, 74–77. (In Chinese) [Google Scholar]
- Zhou, Z.-F.; Ling, J.-M. Finite element model of airport rigid pavement structure based on ABAQUS. J. Traffic. Transp. Eng. 2009, 9, 39–44. (In Chinese) [Google Scholar]
- Ling, J.; Liu, W.; Zhao, H. Mechanical responses of rigid airport pavement to multiple-gear military air cr aft loadings. J. Chin. Civ. Eng. 2007, 40, 60–65. (In Chinese) [Google Scholar]
- Zheng, F.; Weng, X.Z. Calculating methods of stress for cement concrete pavement slab under plane loads. J. Traffic. Transp. Eng. 2010, 10, 8–15. (In Chinese) [Google Scholar]
- Wang, Z.; Cai, L.; Gu, Q.; Wu, A. Airport rigid pavement cumulative damage optimization model considering load stress distribution. J. Chin. Civ. Eng. 2011, 44, 143–150. (In Chinese) [Google Scholar]
- Huang, X.; Bai, T.; Li, C.; Jin, J. Temperature warping stress study on continuously reinforced concrete pavement. J. Tongji Univ. Nat. Sci. 2011, 39, 1026–1030. (In Chinese) [Google Scholar]
- Li, X.K.; Hou, X.S.; Ma, S.L. Deflection and Stress Analysis of a Pavement Slab under Temperature Gradient and Axial Loading Coupling. J. Chongqing Jianzhu Univ. 2008, 30, 53–57. (In Chinese) [Google Scholar]
- Yang, J.; Xu, Y.; Liu, J.; Duan, Y. Failure mechanism analysis of concrete pavement under temperature load coupling effect. Highw. Transp. Tech. 2019, 000, 171–173. (In Chinese) [Google Scholar]
- Chang-Bin, H.U.; Hui-zhen, Z.; Yun, Q. Characteristics of concrete pavement temperature field and temperature stress in hot and humid areas. J. Fuzhou Univ. Nat. Sci. 2011, 39, 727–737. (In Chinese) [Google Scholar]
- Chen, D.P.; Qian, C.X. Numerical simulation of concrete shrinkage based on heat and moisture transfer in porous medium. J. Southeast Univ. 2007, 23, 75–80. [Google Scholar]
- Chen, D.P.; Liu, C.L.; Qian, C.X.; Miao, C.W.; Liu, J.P. Hybrid analytic-FEA method for calculating hygro-thermal deformation of concrete. Adv. Sci. Lett. 2011, 4, 1711–1716. [Google Scholar] [CrossRef]
- Chen, D.P.; Miao, C.W.; Liu, J.P.; Tang, M.S. Advances in multi-scale simulation of hygro-thermo- mechanical deformation behavior of structural concrete. Int. J. Civ. Eng. 2015, 13, 267–277. [Google Scholar]
- Obeid, W.; Mounajed, G.; Alliche, A. Mathematical formulation of thermo-hygro-mechanical coupling problem in non-saturated porous media. Comput. Methods Appl. Mech. Eng. 2001, 190, 5105–5122. [Google Scholar] [CrossRef]
- Tomac, I.; Gutierrez, M. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM. J. Rock Mech. Geotech. Eng. 2017, 9, 92–104. [Google Scholar] [CrossRef]
- Schrefler, B.A.; Khoury, G.A.; Gawin, D.; Majorana, C.E. Thermo-hydro-mechanical modelling of high performance concrete at high temperatures. Eng. Comput. 2002, 19, 787–819. [Google Scholar] [CrossRef]
- Dal Pont, S.; Durand, S.; Schrefler, B.A. A multiphase thermo-hydro-mechanical model for concrete at high temperatures--Finite element implementation and validation under LOCA load. Nucl. Eng. Des. 2007, 237, 2137–2150. [Google Scholar] [CrossRef]
- Li, X.K.; Li, R.T.; Schrefler, B.A. A coupled chemo-thermo-hygro-mechanical model of concrete at high temperature and failure analysis. Int. J. Numer. Anal. Methods Geomech. 2006, 30, 635–681. [Google Scholar] [CrossRef]
- Li, R.T.; Li, X.K. A Coupled Chemo-Elastoplastic-Damage Constitutive Model for Plain Concrete Subjected to High Temperature. Int. J. Damage Mech. 2010, 19, 971–1000. [Google Scholar]
- Beneš, M.; Štefan, R. Hygro-thermo-mechanical analysis of spalling in concrete walls at high temperatures as a moving boundary problem. Int. J. Heat Mass Transf. 2015, 85, 110–134. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Mudunuru, M.K.; Nakshatrala, K.B. Material degradation due to moisture and temperature. Part 1: Mathematical model, analysis, and analytical solutions. Contin. Mech. Thermodyn. 2016, 28, 1847–1885. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Melhem, C.; Boussa, H.; Dumontet, H. Thermo-Hydro-Mechanical Behavior of Concrete at High Temperature; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Grasberger, S.; Meschke, G. Thermo-hygro-mechanical degradation of concrete: From coupled 3D material modelling to durability-oriented multifield structural analyses. Mater. Struct. 2004, 37, 244–256. [Google Scholar] [CrossRef]
- Bangert, F.; Grasberger, S.; Kuhl, D.; Meschke, G. Environmentally induced deterioration of concrete: Physical motivation and numerical modeling. Eng. Fract. Mech. 2003, 70, 891–910. [Google Scholar] [CrossRef]
- Gawin, D.; Pesavento, F.; Schrefler, B.A. Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete. Comput. Methods Appl. Mech. Eng. 2006, 195, 5707–5729. [Google Scholar] [CrossRef]
- Gawin, D.; Pesavento, F.; Schrefler, B.A. Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part II: Shrinkage and creep of concrete. Int. J. Numer. Methods Eng. 2006, 67, 332–363. [Google Scholar] [CrossRef]
- Kruis, J.; Koudelka, T.; Krejčí, T. Efficient computer implementation of coupled hydro-thermo-mechanical analysis. Math. Comput. Simul. 2010, 80, 1578–1588. [Google Scholar] [CrossRef]
- Davie, C.T.; Pearce, C.J.; Bićanić, N. Fully coupled, hygro-thermo-mechanical sensitivity analysis of a pre-stressed concrete pressure vessel. Eng. Struct. 2014, 59, 536–551. [Google Scholar] [CrossRef] [Green Version]
- Zhongyou, L.; Yuanxue, L. A Coupled Thermo-Hygro-Mechanical Damage Model for Concrete Subjected to High Temperatures. Eur. J. Environ. Civ. Eng. 2012, 33, 444–459. (In Chinese) [Google Scholar]
- Li, H.; Liu, J.; Wang, Y.; Yao, T.; Tian, Q.; Li, S. Deformation and cracking modeling for early-age sidewall concrete based on the multi-field coupling mechanism. Constr. Build. Mater. 2015, 88, 84–93. [Google Scholar] [CrossRef]
- Gasch, T.; Malm, R.; Ansell, A. A coupled hygro-thermo-mechanical model for concrete subjected to variable environmental conditions. Int. J. Solids Struct. 2016, 91, 143–156. [Google Scholar] [CrossRef]
- Jirásek, M.; Havlásek, P. Microprestress–solidification theory of concrete creep: Reformulation and improvement. Cem. Concr. Res. 2014, 60, 51–62. [Google Scholar] [CrossRef]
- Pandey, R.N.; Pandey, S.K.; Ribeiro, J.W. Complete and satisfactory solutions of luikov equations of heat and moisture transport in a spherical capillary—Porous body. Int. Commun. Heat Mass Transf. 2000, 27, 975–984. [Google Scholar] [CrossRef]
- Pandey, R.N.; Srivastava, S.K.; Mikhailov, M.D. Solutions of Luikov equations of heat and masstransfer in capillary porous bodies through matrixcalculus: A new approach. Int. J. Heat Mass Transf. 1999, 42, 2649–2660. [Google Scholar] [CrossRef]
- Chang, W.J.; Weng, C.I. Analytical solution to coupled heat and moisture diffusion transfer in porous materials. Int. J. Heat Mass Transf. 2000, 43, 3621–3632. [Google Scholar] [CrossRef]
- Gaur, R.C.; Bansal, N.K. Periodic solution of Luikov equations for heat and mass transfer in capillary porous bodies. Int. J. Energy Res. 1999, 23, 875–885. [Google Scholar] [CrossRef]
- Bloch, M.A.F. Heat and mass transfer in wet porous media in presence of evaporation—condensation. Int. J. Heat Mass Transf. 1998, 41, 2263–2277. [Google Scholar] [CrossRef]
- Ribeiro, J.W.; Cotta, R.M.; Mikhailov, M.D. Integral transform solution of Luikov’s equations for heat and mass transfer in capillary porous media. Int. J. Heat Mass Transf. 1993, 36, 4467–4475. [Google Scholar] [CrossRef]
- Lobo, P.D.C.; Mikhailov, M.D.; Özisik, M.N. On the complex eigen-values of luikov system of equations. Dry. Technol. 1987, 5, 273–286. [Google Scholar] [CrossRef]
- Chang, W.J.; Chen, T.C.; Weng, C.I. Transient hygrothermal stresses in an infinitely long annular cylinder: Coupling of heat and moisture. J. Therm. Stress. 1991, 14, 439–454. [Google Scholar] [CrossRef]
- Cheroto, S.; Guigon, S.M.S.; Ribeiro, J.W. Lumped- Differential Formulations for Drying in Capillary Porous Media. Dry Technol. 1997, 15, 811–835. [Google Scholar] [CrossRef]
- Li, R.; Li, X. Mathematical model and numerical method for simulation of coupled chemo-thermo-hydro-mechanical process in concrete subjected to fire. Acta Mech. Solida Sin. 2006, 38, 471–479. [Google Scholar]
- Bernard, F.; Kamali-Bernard, S.; Prince, W. 3D multi-scale modelling of mechanical behaviour of sound and leached mortar. Cem. Concr. Res. 2008, 38, 449–458. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Wu, B.; Wang, C.; Chen, Z. Multi-scale modeling and analyses on structural deterioration and damage in long-span bridges and its application. Acta Mech. Solida Sin. 2010, 31, 731–756. (In Chinese) [Google Scholar]
- Li, Z.X.; Zhou, T.Q.; Chan, T.H.T.; Yu, Y. Multi-scale numerical analysis on dynamic response and local damage in long-span bridges. Eng. Struct. 2007, 29, 1507–1524. [Google Scholar] [CrossRef]
- Li, Z.X.; Chan, T.H.T.; Yu, Y.; Sun, Z.H. Concurrent multi-scale modeling of civil infrastructures for analyses on structural deterioration part I: Modeling methodology and strategy. Finite Elem. Anal. Des. 2009, 45, 782–794. [Google Scholar] [CrossRef]
- Sheng, J. Fully coupled thermo-hydro-mechanical model of saturated porous media and numerical modelling. Chin. J. Rock Mech. Eng. 2006, 25, 3028–3033. (In Chinese) [Google Scholar]
Number of Cycles | Author | Viewpoints |
---|---|---|
1 | Shadravan. Shideh [24] | Study on the behavior of concrete slabs on the ground in controlled moisture and temperature environment. |
2 | Maekawa. Koichi [25] | Structural creep deformations were reproduced by using the multi-scale coupled thermo-hygro-mechanical modeling. |
3 | Ye. Dan [26] | Moisture capacity was induced into the temperature and moisture analysis for curing concrete to solve the coupled and nonlinear heat transfer and moisture transport problems in early-age concrete. |
4 | Hiller. Jacob E. [27] | A simplified method termed NOLA(Nonlinear Area) and a mechanistic-based rigid pavement analysis program called RadiCAL was proposed to determine fatigue damage levels and critical cracking locations. |
5 | Simonova. Anna [28] | The scope of the research is to analyze the impact of ambient temperature variations in water, and the thermal state of the subgrade on different types of road structures. |
6 | Seongcheol. Choi [29] | Mesoscale analysis of continuously reinforced concrete pavement behavior subjected to temperature and moisture variations. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Liu, C.; Bao, X.; Xiang, T.; Chen, D. Advances in the Deformation and Failure of Concrete Pavement under Coupling Action of Moisture, Temperature, and Wheel Load. Materials 2020, 13, 5530. https://doi.org/10.3390/ma13235530
Dong W, Liu C, Bao X, Xiang T, Chen D. Advances in the Deformation and Failure of Concrete Pavement under Coupling Action of Moisture, Temperature, and Wheel Load. Materials. 2020; 13(23):5530. https://doi.org/10.3390/ma13235530
Chicago/Turabian StyleDong, Wanguo, Chunlin Liu, Xueben Bao, Tengfei Xiang, and Depeng Chen. 2020. "Advances in the Deformation and Failure of Concrete Pavement under Coupling Action of Moisture, Temperature, and Wheel Load" Materials 13, no. 23: 5530. https://doi.org/10.3390/ma13235530
APA StyleDong, W., Liu, C., Bao, X., Xiang, T., & Chen, D. (2020). Advances in the Deformation and Failure of Concrete Pavement under Coupling Action of Moisture, Temperature, and Wheel Load. Materials, 13(23), 5530. https://doi.org/10.3390/ma13235530