Corrosion Resistance of Shape Recoverable Fe-17Mn-5Si-5Cr Alloy in Concrete Structures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure of Test Sample
3.2. Corrosion Test without Concrete Preparation
3.3. Passive Oxide Layer
3.4. Short-Term Corrosion Test with Concrete Preparation
3.5. Long-Term Corrosion Test with Mortar Preparation
4. Conclusions
- Owing to the Mn and Cr, the shape-memorable Fe-17Mn-5Si-5Cr alloy forms a stable passivation oxide layer in alkaline environments, which has a similar pH to concrete.
- This passivation oxide layer enabled the Fe-17Mn-5Si-5Cr alloy to obtain a higher corrosion resistance than S400 carbon steel in salt water (more than 140% in the pH range of 7–13).
- Because of the dipping in salt water for 28 days, the corrosion resistance of the Fe-17Mn-5Si-5Cr alloy decreased by 97.2%, whereas that of the S400 decreased by 99.6%, indicating a lower corrosion sensitivity of the Fe-17Mn-5Si-5Cr alloy to the change in mortar pH.
- The Fe-17Mn-5Si-5Cr alloy showed a higher corrosion resistance than the S400 (more than 150% in the mortar), indicating better chemical stability in the concrete structure.
- These results indicate that the Fe-17Mn-5Si-5Cr shape memory alloy exhibits a higher corrosion resistance than S400 carbon steel (commonly used for reinforcing concrete) and that it is a potential candidate for fabricating structures based on prestressed concrete and reinforced concrete.
Author Contributions
Funding
Conflicts of Interest
References
- Dong, Z.; Kajiwara, S.; Kikuchi, T.; Sawaguchi, T. Effect of pre-deformation at room temperature on shape memory properties of stainless type Fe–15Mn–5Si–9Cr–5Ni–(0.5–1.5) NbC alloys. Acta Mater. 2005, 53, 4009–4018. [Google Scholar] [CrossRef]
- Otsuka, H.; Yamada, H.; Tanahashi, H.; Maruyama, T. Shape memory effect in Fe-Mn-Si-Cr-Ni polycrystalline alloys. Mater. Sci. Forum 1990, 56-58, 655–660. [Google Scholar] [CrossRef]
- Sato, A.; Yamaji, Y.; Mori, T. Physical properties controlling shape memory effect in Fe-Mn-Si alloys. Acta Metall. 1986, 34, 287–294. [Google Scholar] [CrossRef]
- Kim, J.I.; Hwang, K.S. Effect of Annealing Temperature on the Shape Memory Properties of Ti-44.5 Ni-5Cu and Ti-45.2 Ni-5Cu (at%) Alloys. Korean J. Met. Mater. 2019, 57, 562–568. [Google Scholar] [CrossRef]
- Liu, Y. The superelastic anisotropy in a NiTi shape memory alloy thin sheet. Acta Mater. 2015, 95, 411–427. [Google Scholar] [CrossRef]
- Miyazaki, S.; Otsuka, K.; Suzuki, Y. Transformation pseudoelasticity and deformation behavior in a Ti-50.6 at% Ni alloy. Scr. Metall. 1981, 15, 287–292. [Google Scholar] [CrossRef]
- Narayana, P.; Kim, S.-W.; Hong, J.-K.; Reddy, N.; Yeom, J.-T. Estimation of transformation temperatures in Ti–Ni–Pd shape memory alloys. Met. Mater. Int. 2018, 24, 919–925. [Google Scholar] [CrossRef]
- Nishida, M.; Wayman, C.M.; Honma, T. Precipitation processes in near-equiatomic TiNi shape memory alloys. Metall. Trans. A 1986, 17, 1505–1515. [Google Scholar] [CrossRef]
- Hong, K.; Lee, S.; Han, S.; Yeon, Y. Evaluation of Fe-based shape memory alloy (Fe-SMA) as strengthening material for reinforced concrete structures. Appl. Sci. 2018, 8, 730. [Google Scholar] [CrossRef] [Green Version]
- Lagoudas, D.C. Shape Memory Alloys: Modeling and Engineering Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Arabi-Hashemi, A.; Lee, W.; Leinenbach, C. Recovery stress formation in FeMnSi based shape memory alloys: Impact of precipitates, texture and grain size. Mater. Des. 2018, 139, 258–268. [Google Scholar] [CrossRef]
- Choi, E.; Chung, Y.-S.; Choi, J.-H.; Kim, H.-T.; Lee, H. The confining effectiveness of NiTiNb and NiTi SMA wire jackets for concrete. Smart Mater. Struct. 2010, 19, 035024. [Google Scholar] [CrossRef]
- Czaderski, C.; Hahnebach, B.; Motavalli, M. RC beam with variable stiffness and strength. Constr. Build. Mater. 2006, 20, 824–833. [Google Scholar] [CrossRef]
- Lee, W.; Weber, B.; Feltrin, G.; Czaderski, C.; Motavalli, M.; Leinenbach, C. Stress recovery behaviour of an Fe–Mn–Si–Cr–Ni–VC shape memory alloy used for prestressing. Smart Mater.Struct. 2013, 22, 125037. [Google Scholar] [CrossRef]
- Lee, W.; Weber, B.; Leinenbach, C. Recovery stress formation in a restrained Fe–Mn–Si-based shape memory alloy used for prestressing or mechanical joining. Constr. Build. Mater. 2015, 95, 600–610. [Google Scholar] [CrossRef]
- Maji, A.K.; Negret, I. Smart prestressing with shape-memory alloy. J. Eng. Mech. 1998, 124, 1121–1128. [Google Scholar] [CrossRef]
- Dong, Z.; Klotz, U.E.; Leinenbach, C.; Bergamini, A.; Czaderski, C.; Motavalli, M. A Novel Fe-Mn-Si Shape Memory Alloy With Improved Shape Recovery Properties by VC Precipitation. Adv. Eng. Mater. 2009, 11, 40–44. [Google Scholar] [CrossRef]
- Shahverdi, M.; Czaderski, C.; Motavalli, M. Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams. Constr. Build. Mater. 2016, 112, 28–38. [Google Scholar] [CrossRef]
- Hong, K.-N.; Yeon, Y.-M.; Shim, W.-B.; Kim, D.-H. Recovery Behavior of Fe-Based Shape Memory Alloys Under Different Restraints. Appl. Sci. 2020, 10, 3441. [Google Scholar] [CrossRef]
- Fontana, M.G. Corrosion Engineering; Tata McGraw-Hill Education: New York, NY, USA, 2005. [Google Scholar]
- Jones, D.A. Principles and Prevention of Corrosion; Macmillan: New York, NY, USA, 1992. [Google Scholar]
- Uhlig, H.H.; King, C. Corrosion and corrosion control. J. Electrochem. Soc. 1972, 119, 327C. [Google Scholar] [CrossRef]
- Kim, D.; Kim, Y.; Oak, J.-J.; Lee, J.; Park, C.H.; Lee, W.; Park, Y. Effect of Ni, C and Ti Addition on Shape Recovery Behavior and the Mechanical Properties of Fe-17Mn-5Si-5Cr Shape Memory Alloys. Korean J. Met. Mater. 2020, 58, 660–671. [Google Scholar] [CrossRef]
- Amaral, S.; Müller, I. Passivation of pure iron in alkaline solution containing silicate and sulphate—Galvanostatic and Potentiostatic studies. Corros. Sci. 1999, 41, 747–758. [Google Scholar] [CrossRef]
- Bera, S.; Rangarajan, S.; Narasimhan, S. Electrochemical passivation of iron alloys and the film characterisation by XPS. Corros. Sci. 2000, 42, 1709–1724. [Google Scholar] [CrossRef]
- Hancock, P.; Mayne, J. The inhibition of the corrosion of iron in neutral and alkaline solutions. I. J. Appl. Chem. 1959, 9, 345–352. [Google Scholar] [CrossRef]
- Haupt, S.; Strehblow, H. Corrosion, layer formation, and oxide reduction of passive iron in alkaline solution: A combined electrochemical and surface analytical study. Langmuir 1987, 3, 873–885. [Google Scholar] [CrossRef]
- Grosvenor, A.; Kobe, B.; Biesinger, M.; McIntyre, N. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Fajardo, S.; Llorente, I.; Jiménez, J.A.; Bastidas, J.; Bastidas, D.M. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution. Corros. Sci. 2019, 154, 246–253. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, J.G. Effect of manganese on the corrosion behavior of low carbon steel in 10 wt.% sulfuric acid. Int. J. Electrochem. Sci. 2015, 10, 6872–6885. [Google Scholar]
- Nguyen, T.D.; Zhang, J.; Young, D.J. Effects of cerium and manganese on corrosion of Fe–Cr and Fe–Cr–Ni alloys in Ar–20CO2 and Ar–20CO2–20H2O gases at 650 °C. Corros. Sci. 2015, 100, 448–465. [Google Scholar] [CrossRef]
- Wilson, P.; Chen, Z. The effect of manganese and chromium on surface oxidation products formed during batch annealing of low carbon steel strip. Corros. Sci. 2007, 49, 1305–1320. [Google Scholar] [CrossRef]
Name | Fe | Mn | Si | Cr | Ni | Ti | C |
---|---|---|---|---|---|---|---|
S400 | Bal. | <1.0 | - | - | - | - | 0.2 |
FSMA | Bal. | 17 | 5 | 5 | 4 | 1 | 0.3 |
Reinforcement Material | Mortar | pH Adjustment with CaO | Short-Term Immersion Time | Long-Term Immersion Time |
---|---|---|---|---|
S400 | Ⅹ | ○ | 30 min | - |
○ | Ⅹ | 10, 60, 120 min | 1, 3, 7, 14, 28 days | |
FSMA | Ⅹ | ○ | 30 min | - |
○ | Ⅹ | 10, 60, 120 min | 1, 3, 7, 14, 28 days |
Sample | pH | Ecorr (V vs. Ag/AgCl) | icorr (A/cm2) | Rp (kΩ∙cm2) |
---|---|---|---|---|
S400 | 7 | −0.685 | 1.7 × 10−5 | 1.8 |
9 | −0.659 | 4.3 × 10−6 | 6.8 | |
11 | −0.575 | 2.2 × 10−6 | 10.9 | |
13 | −0.558 | 7.7 × 10−7 | 76.4 | |
FSMA | 7 | −0.412 | 4.7 × 10−6 | 8.7 |
9 | −0.392 | 3.2 × 10−6 | 11.8 | |
11 | −0.387 | 1.6 × 10−6 | 23.2 | |
13 | −0.288 | 3.8 × 10−7 | 111.2 |
Sample | Immersion Time | Ecorr (V vs. Ag/AgCl) | icorr (A/cm2) | Rp (kΩ∙cm2) |
---|---|---|---|---|
S400 | 10 min | −0.379 | 6.5 × 10−7 | 72.6 |
60 min | −0.305 | 2.3 × 10−7 | 154.7 | |
120 min | −0.255 | 2.2 × 10−7 | 267.9 | |
FSMA | 10 min | −0.312 | 1.9 × 10−7 | 261.1 |
60 min | −0.246 | 3.0 × 10−8 | 2107.1 | |
120 min | −0.253 | 2.9 × 10−8 | 2118.2 |
Sample | Immersion Time | Ecorr (V vs. Ag/AgCl) | icorr (A/cm2) | Rp (kΩ∙cm2) |
---|---|---|---|---|
S400 | 1 day | −0.621 | 3.3 × 10−7 | 227.4 |
3 day | −0.856 | 5.2 × 10−7 | 47.4 | |
7 day | −0.858 | 9.2 × 10−6 | 6.4 | |
14 day | −0.895 | 1.3 × 10−5 | 4.1 | |
28 day | −0.895 | 3.7 × 10−5 | 1.0 | |
FSMA | 1 day | −0.231 | 2.2 × 10−7 | 350.1 |
3 day | −0.241 | 1.3 × 10−6 | 81.9 | |
7 day | −0.248 | 3.5 × 10−6 | 37.1 | |
14 day | −0.342 | 5.0 × 10−6 | 22.0 | |
28 day | −0.341 | 6.9 × 10−6 | 9.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, J.; Kang, M.; Shin, D.; Seo, E.; Kim, D.; Yeon, Y.; Hong, K.; Lee, W.; Lee, J. Corrosion Resistance of Shape Recoverable Fe-17Mn-5Si-5Cr Alloy in Concrete Structures. Materials 2020, 13, 5531. https://doi.org/10.3390/ma13235531
Joo J, Kang M, Shin D, Seo E, Kim D, Yeon Y, Hong K, Lee W, Lee J. Corrosion Resistance of Shape Recoverable Fe-17Mn-5Si-5Cr Alloy in Concrete Structures. Materials. 2020; 13(23):5531. https://doi.org/10.3390/ma13235531
Chicago/Turabian StyleJoo, Jaehoon, Minjoo Kang, Dongmin Shin, Eunhye Seo, Dohyung Kim, Yeongmo Yeon, Kinam Hong, Wookjin Lee, and Junghoon Lee. 2020. "Corrosion Resistance of Shape Recoverable Fe-17Mn-5Si-5Cr Alloy in Concrete Structures" Materials 13, no. 23: 5531. https://doi.org/10.3390/ma13235531
APA StyleJoo, J., Kang, M., Shin, D., Seo, E., Kim, D., Yeon, Y., Hong, K., Lee, W., & Lee, J. (2020). Corrosion Resistance of Shape Recoverable Fe-17Mn-5Si-5Cr Alloy in Concrete Structures. Materials, 13(23), 5531. https://doi.org/10.3390/ma13235531