The Effect of Zeolite Features on the Dehydration Reaction of Methanol to Dimethyl Ether: Catalytic Behaviour and Kinetics
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of the Investigated Samples
2.2. Characterisation of the Investigated Samples
2.3. Catalytic Tests and Kinetic Analysis
3. Results and Discussion
3.1. Physic-Chemical Properties of the Investigated Samples
3.2. Catalytic Tests
3.3. Kinetic Analysis on MFI- and FER-Type Zeolites
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kalck, P.; Le Berre, C.; Serp, P. Recent advances in the methanol carbonylation reaction into acetic acid. Coord. Chem. Rev. 2020, 402, 213078. [Google Scholar] [CrossRef]
- Aramouni, N.A.K.; Touma, J.G.; Tarboush, B.A.; Zeaiter, J.; Ahmad, M.N. Catalyst design for dry reforming of methane: Analysis review. Renew. Sustain. Energy Rev. 2018, 82, 2570–2585. [Google Scholar] [CrossRef]
- Lanzafame, P.; Centi, G.; Perathoner, S. Catalysis for biomass and CO2 use through solar energy: Opening new scenarios for a sustainable and low-carbon chemical production. Chem. Soc. Rev. 2014, 43, 7562–7580. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, A.; Khalilpour, K.R.; Milani, D.; Panahi, M. Trends in CO2 conversion and utilization: A review from process systems perspective. J. Environ. Chem. Eng. 2018, 6, 5771–5794. [Google Scholar] [CrossRef]
- Giuliano, A.; Catizzone, E.; Freda, C.; Cornacchia, G. Valorization of OFMSW Digestate-Derived Syngas toward Methanol, Hydrogen, or Electricity: Process Simulation and Carbon Footprint Calculation. Processes 2020, 8, 526. [Google Scholar] [CrossRef]
- Giuliano, A.; Freda, C.; Catizzone, E. Techno-Economic Assessment of Bio-Syngas Production for Methanol Synthesis: A Focus on the Water–Gas Shift and Carbon Capture Sections. Bioengineering 2020, 7, 70. [Google Scholar] [CrossRef]
- Arcoumanis, C.; Bae, C.; Crookes, R.; Kinoshita, E. The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review. Fuel 2008, 87, 1014–1030. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, C. Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel. Energy Conv. Manage. 2014, 86, 848–863. [Google Scholar] [CrossRef]
- Semelsberger, T.A.; Borup, R.L.; Greene, H.L. Dimethyl ether (DME) as an alternative fuel. J. Power Source 2006, 156, 497–511. [Google Scholar] [CrossRef]
- Haro, P.; Trippe, F.; Stahl, R.; Henrich, E. Bio-syngas to gasoline and olefins via DME—A comprehensive techno-economic assessment. Appl. Energy 2013, 108, 54–65. [Google Scholar] [CrossRef]
- Olah, G.A. Beyond oil and gas: The Methanol Economy. Angew. Chem. Int. Ed. 2005, 44, 2636–2639. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Wei, Y.; Ye, M.; Liu, Z. Methanol to Olefins (MTO): From fundamentals to commercialization. ACS Catal. 2015, 5, 1922–1938. [Google Scholar] [CrossRef]
- Perathoner, S.; Centi, G. CO2 recycling: A key strategy to introduce green energy in the chemical production chain. ChemSusChem 2014, 7, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Macrì, D.; Catizzone, E.; Molino, A.; Migliori, M. Supercritical waster gasification of biomass and agro-food residues: Energy assessment from modelling approach. Renew. Energy 2020, 150, 624–636. [Google Scholar] [CrossRef]
- Giuliano, A.; Catizzone, E.; Barisano, D.; Nanna, F.; Villone, A.; De Bari, I.; Cornacchia, G.; Braccio, G. Towards Methanol Economy: A Techno-environmental Assessment for a Bio-methanol OFMSW/Biomass/Carbon Capture-based Integrated Plant. Int. J. Heat Technol. 2019, 37, 665–674. [Google Scholar] [CrossRef]
- Molino, A.; Migliori, M.; Blasi, A.; Davoli, M.; Marino, T.; Chianese, S.; Catizzone, E.; Giordano, G. Municipal waste leachate conversion via catalytic supercritical water gasification process. Fuel 2017, 206, 155–161. [Google Scholar] [CrossRef]
- Centi, G.; Genovese, C.; Giordano, G.; Katovic, A.; Perathoner, S. Performance of Fe-BEA catalysts for the selective hydroxylation of benzene with N2O. Catal. Today 2004, 91–92, 17–26. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S.; Pino, F.; Arrigo, R.; Giordano, G.; Katovic, A.; Pedullà, V. Performance of Fe-[Al, B] catalyst in benzene hydroxylation with N2O: The role of zeolite defects as host sites for highly active iron species. Catal. Today 2005, 110, 211–220. [Google Scholar] [CrossRef]
- Katovic, A.; Giordano, G.; Bonelli, B.; Onida, B.; Garrone, E.; Lentz, P.; Nagy, J.B. Preparation and characterization of mesoporous molecular sieves containing Al, Fe or Zn. Microporous Mesoporous Mater. 2001, 44–45, 275–281. [Google Scholar] [CrossRef]
- Raoof, F.; Taghizadeh, M.; Eliassi, A.; Yaripour, F. Effects of temperature and feed composition on catalytic dehydration of methanol to dimethyl ether over γ-alumina. Fuel 2008, 87, 2967–2971. [Google Scholar] [CrossRef]
- Azizi, Z.; Rezaeimanesh, M.; Tohidian, T.; Rahimpour, M.R. Dimethyl ether: A review of technologies and production challenges. Chem. Eng. Process. 2014, 82, 150–172. [Google Scholar] [CrossRef]
- Xu, M.; Lunsford, J.H.; Goodman, D.W.; Bhattacharyya, A. Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts. Appl. Catal. A 1997, 149, 289–301. [Google Scholar] [CrossRef]
- Catizzone, E.; Bonura, G.; Migliori, M.; Frusteri, F.; Giordano, G. CO2 recycling to dimethyl ether: State-of-the-art and perspectives. Molecules 2018, 23, 31. [Google Scholar] [CrossRef] [Green Version]
- Catizzone, E.; Aloise, A.; Migliori, M.; Giordano, G. From 1-D to 3-D zeolite structures: Performance assessment in catalysis of vapour-phase methanol dehydration to DME. Microporous Mesoporous Mater. 2017, 243, 102–111. [Google Scholar] [CrossRef]
- Catizzone, E.; Migliori, M.; Purita, A.; Giordano, G. Ferrierite vs. γ-Al2O3: The superiority of zeolites in terms of water-resistance in vapour phase dehydration of methanol to dimethyl ether. J. Energy Chem. 2019, 30, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Catizzone, E.; Cirelli, Z.; Aloise, A.; Lanzafame, P.; Migliori, M.; Giordano, G. Methanol conversion over ZSM-12, ZSM-22 and EU-1 zeolites: From DME to hydrocarbons production. Catal. Today 2018, 304, 39–50. [Google Scholar] [CrossRef]
- Palčić, A.; Catizzone, E. Application of nanosized zeolites in methanol conversion processes: A short review. Curr. Opin. Green Sustain. Chem. 2020, 27, 100393. [Google Scholar] [CrossRef]
- Prasad, P.S.S.; Bae, J.W.; Kang, S.-H.; Lee, Y.-J.; Jun, K.-W. Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts: The superiority of ferrierite over the other zeolites. Fuel Process. Technol. 2008, 89, 1281–1286. [Google Scholar] [CrossRef]
- Montesano, R.; Narvaez, A.; Chadwick, D. Shape-selectivity effects in syngas-to-dimethyl ether conversion over Cu/ZnO/Al2O3 and zeolite mixtures: Carbon deposition and by-product formation. Appl. Catal. A 2014, 482, 69–77. [Google Scholar] [CrossRef]
- Garci-Trenco, A.; Martinez, A. Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts: New insights into the role of zeolite acidity. Appl. Catal. A 2012, 411–412, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Palcic, A.; Subramanian, V.; Moldovan, S.; Ersen, O.; Valtchev, V.; Ordomsky, V.V.; Khodakov, A.Y. Direct dimethyl ether synthesis from syngas on copper-zeolite hybrid catalysts with a wide range of zeolite particle size. J. Catal. 2016, 338, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Frusteri, F.; Migliori, M.; Cannilla, C.; Frusteri, L.; Catizzone, E.; Aloise, A.; Giordano, G.; Bonura, G. Direct CO2-to-DME hydrogenation reaction: New evidences of a superior behavior of FER-based hyb rid systems to obtain high DME yield. J. CO2 Util. 2017, 18, 353–361. [Google Scholar] [CrossRef]
- Bonura, G.; Cordaro, M.; Spadaro, L.; Cannilla, C.; Arena, F.; Frusteri, F. Hbrid Cu-ZnO-ZrO2/H-ZSM5 system for the direct synthesis of DME by CO2 hydrogenation. Appl. Catal. B Environ. 2013, 140, 16–24. [Google Scholar] [CrossRef]
- Ge, Q.; Huang, Y.; Qiu, F.; Li, S. Bifunctional catalysts for conversion of synthesis gas to dimethyl ether. Appl. Catal. A Gen 1998, 167, 23–30. [Google Scholar] [CrossRef]
- Frusteri, F.; Bonura, G.; Cannilla, C.; Drago Ferrante, G.; Aloise, A.; Catizzone, E.; Migliori, M.; Giordano, G. Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation. Appl. Catal. B Environ. 2015, 176–177, 522–531. [Google Scholar] [CrossRef]
- Bonura, G.; Frusteri, F.; Cannilla, C.; Drago Ferrante, G.; Aloise, A.; Catizzone, E.; Migliori, M.; Giordano, G. Catalytic features of CuZnZr-zeolite hybrid systems for the direct CO2-to-DME hydrogenation reaction. Catal. Today 2016, 277, 48–54. [Google Scholar] [CrossRef]
- Bonura, G.; Migliori, M.; Frusteri, L.; Cannilla, C.; Catizzone, E.; Giordano, G.; Frusteri, F. Acidity control of zeolite functionality on activity and stability of hybrid catalysts during DME production via CO2 hydrogenation. J. CO2 Util. 2018, 24, 398–406. [Google Scholar] [CrossRef]
- Catizzone, E.; Freda, C.; Braccio, G.; Frusteri, F.; Bonura, G. Dimethyl ether as circular hydrogen carrier: Catalytic aspects of hydrogenation/dehydrogenation steps. J. Energy Chem. 2020, 58, 55–77. [Google Scholar] [CrossRef]
- Ying, J.Y. Design and synthesis of nanostructured catalysts. Chem. Eng. Sci. 2006, 61, 1540–1548. [Google Scholar] [CrossRef]
- Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825–1837. [Google Scholar] [CrossRef]
- Zeng, M.; Yuan, S.; Huang, D.; Cheng, Z. Accelerated Design of Catalytic Water-Cleaning Nanomotors via Machine Learning. ACS Appl. Mater. Interfaces 2019, 11, 40099–40106. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, A.; Migliori, M.; Cozza, D.; Catizzone, E.; Giordano, G.; Barbieri, G. Methanol conversion to dimethyl ether in catalytic zeolite membrane reactors. ACS Sustain. Chem. Eng. 2020, 8, 10471–10479. [Google Scholar] [CrossRef]
- Comboni, D.; Pagliaro, F.; Lotti, P.; Gatta, G.D.; Merlini, M.; Milani, S.; Migliori, M.; Giordano, G.; Catizzone, E.; Collimgs, I.E.; et al. The elastic behavior of zeolitic frameworks: The case of MFI type under high-pressure methanol intrusion. Catal. Today 2020, 345, 88–96. [Google Scholar] [CrossRef]
- Catizzone, E.; van Daele, S.; Bianco, M.; Di Michele, A.; Aloise, A.; Migliori, M.; Valtchev, V. Catalytic application of ferrierite nanocrystals in vapour-phase dehydration of methanol to dimethyl ether. Appl. Catal. B Environ. 2019, 243, 273–282. [Google Scholar] [CrossRef]
- Catizzone, E.; Aloise, A.; Giglio, E.; Ferrarelli, G.; Bianco, M.; Migliori, M.; Giordano, G. MFI vs. FER zeolite during methanol dehydration to dimethyl ether: The crystal size plays a key role. Catal. Commun. 2021, 149, 106214. [Google Scholar] [CrossRef]
- Bonura, G.; Cannilla, C.; Frusteri, L.; Catizzone, E.; Todaro, S.; Migliori, M.; Giordano, G.; Frusteri, F. Interaction effects between CuO-ZnO-ZrO2 methanol phase and zeolite surface affecting stability of hybrid systems during one-step CO2 hydrogenation to DME. Catal. Today 2020, 345, 175–182. [Google Scholar] [CrossRef]
- Zhi, Y.; Shi, H.; Mu, L.; Liu, Y.; Mei, D.; Camaioni, D.M.; Lercher, J.A. Dehydration Pathways of 1-Propanol on HZSM-5 in the Presence and Absence of Water. J. Am. Chem. Soc. 2015, 137, 15781–15794. [Google Scholar] [CrossRef]
- Liang, J.; Mi, Y.; Song, G.; Peng, H.; Li, Y.; Yan, R.; Liu, W.; Wang, Z.; Wu, P.; Liu, F. Environmental benign synthesis of Nano-SSZ-13 via FAU trans-crystallization: Enhanced NH3-SCR performance on Cu-SSZ-13 with nano-size effect. J. Hazard. Mater. 2020, 398, 122986. [Google Scholar] [CrossRef]
- Kortunov, P.; Chmelik, C.; Kärger, J.; Rakoczy, R.A.; Ruthven, D.M.; Traa, Y.; Vasenkov, S.; Weitkamp, J. Sorption kinetics and intracrystalline diffusion of methanol in ferrierite: An example of disguised kinetics. Adsorption 2005, 11, 235–244. [Google Scholar] [CrossRef]
- Bowen, T.C.; Wyss, J.C.; Noble, R.D.; Falconer, J.L. Measurements of diffusion through a zeolite membrane using isotopic-transient pervaporation. Microporous Mesoporous Mater. 2004, 71, 199–210. [Google Scholar] [CrossRef]
Sample | Topology | Channel Orientation | Membered Rings | Channel Openings (Å) |
---|---|---|---|---|
ZSM-22 | TON | 1D | 10 | 4.6 × 5.7 |
EU-1 | EUO | 1D | 10 | 4.1 × 5.4 |
ZSM-22 | MTW | 1D | 12 | 5.6 × 6.0 |
MOR | MOR | 1D | 12//8 | 6.5 × 7.0 < > 2.6 × 5.7 |
M-FER10 NP-FER10 NC-FER10 M-FER30 M-FER60 | FER | 2D | 10 × 8 | 4.2 × 5.4 < > 3.5 × 4.8 |
M-MFI25 NC-MFI25 M-MFI50 M-MFI100 | MFI | 3D | 10 | 5.1 × 5.5 < >5.3 × 5.6 |
beta | BEA | 3D | 12 | 6.6 × 7.7 < > 5.6 × 5.6 |
Sample Name | Framework | Synthesis Molar Gel Composition | Crystallisation | Ref. | |
---|---|---|---|---|---|
Temperature (°C) | Time (h) | ||||
M-FER10 | FER | 0.6 C4H9N * − 0.08 Na2O − 0.05 Al2O3 − 1 SiO2 − 20 H2O | 180 | 120 | [44] |
NP-FER10 | FER | 0.6 C4H9N * − 0.015 NaC12H25SO4 * − 0.08 Na2O − 0.05 Al2O3 − 1 SiO2 − 20 H2O | 180 | 60 | [44] |
NC-FER10 | FER | 0.6 C4H9N * − 0.015 NaC12H25SO4 * − 0.08 Na2O − 0.05 Al2O3 − 1 SiO2 − 20 H2O + 3% wt of seeds ** | 160 | 60 | [44] |
M-FER30 | FER | 2 C5H5N * − 0.0575 Na2O − 0.017 Al2O3 − 1 SiO2 − 25 H2O | 160 | 120 | [25] |
M-FER60 | FER | 2 C5H5N * − 0.0575 Na2O − 0.008 Al2O3 − 1 SiO2 − 25 H2O | 160 | 120 | [25] |
M-MFI25 | MFI | 0.10 Na2O − 0.08 C12H28NBr * − 0.02 Al2O3 − 1 SiO2 − 20 H2O | 170 | 120 | [35] |
M-MFI50 | MFI | 0.10 Na2O − 0.08 C12H28NBr * 0.01 Al2O3 − 1 SiO2− 20 H2O | 170 | 120 | [35] |
M-MFI100 | MFI | 0.10 Na2O − 0.08 C12H28NBr * − 0.005 Al2O3 − 1 SiO2 − 20 H2O | 170 | 120 | [35] |
NC-MFI25 | MFI | 0.10 Na2O − 0.08 C12H28NBr * 0.02 Al2O3 − 1 SiO2 − 20 H2O | 170 | 90 | [45] |
MOR | MOR | 0.20Na2O − 0.02Al2O3 − 1.0SiO2 − 20H2O | 170 | 120 | [46] |
ZSM-12 | MTW | 0.1 N2O − 0.2 C7H18NBr * − 0.01 Al2O3 − 1 SiO2 − 20 H2O | 140 | 150 | [26] |
ZSM-22 | TON | 0.140 K2O − 0.3 C8H20N2 * − 0.011 Al2O3 − 1 SiO2 − 40 H2O | 160 | 80 | [26] |
EU-1 | EUO | 0.3 Na2O − 0.15 C12H30N2Br2 * − 0.017 Al2O3 − 1 SiO2 − 45 H2O | 160 | 340 | [26] |
beta | BEA | 0.10 Na2O − 0.2 C8H21NO * − 0.02 Al2O3 − 1 SiO2 − 10 H2O | 150 | 120 | [46] |
Sample | Specific Surface Area a (m2/g) | Micropore Volume b (cm3/g) | Mesopore Volume b (cm3/g) | Si/Al c (mol/mol) | Total Acidity d (mmol/g) | Strong Acid Sites Fraction e (-) | Crystal Size (µm) |
---|---|---|---|---|---|---|---|
M-FER10 | 332 | 0.136 | 0.086 | 9.6 | 1.10 | 0.70 | 5–10 |
NP-FER10 | 314 | 0.125 | 0.093 | 8.6 | 1.12 | 0.72 | 0.1–0.5 |
NC-FER10 | 304 | 0.122 | 0.071 | 9.4 | 1.10 | 0.70 | <0.1 |
M-FER30 | 272 | 0.108 | 0.065 | 23 | 0.82 | 0.77 | 10–20 |
M-FER60 | 275 | 0.110 | 0.054 | 45 | 0.40 | 0.78 | 10–20 |
M-MFI25 | 386 | 0.126 | 0.073 | 27 | 0.52 | 0.58 | ~5 |
NC-MFI25 | 371 | 0.124 | 0.074 | 23 | 0.58 | 0.52 | 0.1–0.5 |
M-MFI50 | 316 | 0.124 | 0.070 | 68 | 0.35 | 0.55 | ~5 |
M-MFI100 | 382 | 0.101 | 0.112 | 127 | 0.15 | 0.54 | ~5 |
MOR | 348 | 0.152 | 0.028 | 7 | 1.03 | 0.74 | 5–10 |
ZSM-12 | 294 | 0.115 | 0.031 | 32 | 0.50 | 0.82 | 2–3 |
ZSM-22 | 210 | 0.074 | 0.104 | 43 | 0.56 | 0.68 | 5–10 |
EU-1 | 384 | 0.146 | 0.061 | 21 | 0.80 | 0.72 | <1 |
beta | 468 | 0.202 | 0.148 | 25 | 0.60 | 0.58 | <1 |
Sample | |||
---|---|---|---|
M-FER10 | 60.4 | 49.7 | −175.0 |
NP-FER10 | 58.2 | 51.2 | −165.8 |
NC-FER10 | 61.7 | 47.6 | −177.1 |
M-FER30 | 52.4 | 45.0 | −185.6 |
M-FER60 | 52.3 | 47.2 | −187.9 |
M-MFI25 | 105.5 | 70.7 | −132.6 |
NC-MFI25 | 73.0 | 60.1 | −152.7 |
M-MFI50 | 82.8 | 72.7 | −136.7 |
M-MFI100 | 70.7 | 57.7 | −174.7 |
Sample | Effectiveness Factor | |||
---|---|---|---|---|
140 °C | 160 °C | 180 °C | 200 °C | |
M-FER10 | 0.2102 | 0.1017 | 0.0504 | 0.0260 |
(1.000) | (0.4840) | (0.2396) | (0.1237) | |
NP-FER10 | 0.9916 | 0.9817 | 0.9629 | 0.9298 |
(1.000) | (0.9900) | (0.9711) | (0.9377) | |
NC-FER10 | 0.9994 | 0.9987 | 0.9972 | 0.9944 |
(1.000) | (0.9993) | (0.9978) | (0.9950) | |
M-FER30 | 0.0483 | 0.0243 | 0.0129 | 0.0072 |
(1.000) | (0.5025) | (0.2664) | (0.1485) | |
M-FER60 | 0.1099 | 0.0566 | 0.0304 | 0.0170 |
(1.000) | (0.5149) | (0.2763) | (0.1551) | |
M-MFI25 | 0.9297 | 0.7412 | 0.3924 | 0.1508 |
(1.000) | (0.7973) | (0.4221) | (0.1622) | |
NC-MFI25 | 0.9990 | 0.9973 | 0.9935 | 0.9853 |
(1.000) | (0.9983) | (0.9945) | (0.9863) | |
M-MFI50 | 0.9490 | 0.8524 | 0.6500 | 0.3883 |
(1.000) | (0.8983) | (0.6850) | (0.4092) | |
M-MFI100 | 0.9609 | 0.9018 | 0.7826 | 0.5928 |
(1.000) | (0.9385) | (0.8144) | (0.6170) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catizzone, E.; Giglio, E.; Migliori, M.; Cozzucoli, P.C.; Giordano, G. The Effect of Zeolite Features on the Dehydration Reaction of Methanol to Dimethyl Ether: Catalytic Behaviour and Kinetics. Materials 2020, 13, 5577. https://doi.org/10.3390/ma13235577
Catizzone E, Giglio E, Migliori M, Cozzucoli PC, Giordano G. The Effect of Zeolite Features on the Dehydration Reaction of Methanol to Dimethyl Ether: Catalytic Behaviour and Kinetics. Materials. 2020; 13(23):5577. https://doi.org/10.3390/ma13235577
Chicago/Turabian StyleCatizzone, Enrico, Emanuele Giglio, Massimo Migliori, Paolo C. Cozzucoli, and Girolamo Giordano. 2020. "The Effect of Zeolite Features on the Dehydration Reaction of Methanol to Dimethyl Ether: Catalytic Behaviour and Kinetics" Materials 13, no. 23: 5577. https://doi.org/10.3390/ma13235577
APA StyleCatizzone, E., Giglio, E., Migliori, M., Cozzucoli, P. C., & Giordano, G. (2020). The Effect of Zeolite Features on the Dehydration Reaction of Methanol to Dimethyl Ether: Catalytic Behaviour and Kinetics. Materials, 13(23), 5577. https://doi.org/10.3390/ma13235577