Investigation on Ultrasonic Welding Attributes of Novel Carbon/Elium® Composites
Abstract
:1. Introduction
2. Materials and Manufacturing
2.1. Materials
2.2. Manufacturing of Composite Laminates
2.2.1. Manufacturing of Flat Composite Laminates
2.2.2. Manufacturing of Energy Director (ED) Integrated Laminates
3. Experiments
3.1. Welding Methodology
3.2. Adhesive Sample Preparation
3.3. Lap Shear Test
3.4. Fractographic Investigation
4. Results and Discussions
4.1. Initial Welding Trials
4.2. Design of Experiments
4.3. Adhesively Bonded Joints
4.4. Welding of Elium® Composites with Integrated EDs
4.5. Microscopic Investigation and Surface Morphology
4.6. Comparison of Lap Shear Bonding Strength: Adhesives vs. Welding
5. Conclusions
- (1)
- Elium® composites with energy directors can be efficiently welded with the optimized welding parameters of a weld time of 1.5 s and weld pressure of 3 bar. The SC-ELC_FL-ELC welded laminate configuration showed the maximum LSS2 value of 17.5 MPa.
- (2)
- The maximum lap shear strength of the welded laminate (SC-ELC_FL-ELC) was found to be 23.2% higher than the adhesively bonded Elium® laminates.
- (3)
- SEM analysis showed the significant plastic deformation of Elium® resin and the shear cusp formation near the resin-rich sites. These observations were typical of the optimized weld condition and had a direct relationship with strong interfacial bonding.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gilmore, C.M. Advanced Composites Manufacturing by Timothy, G. Gutowski. Mater. Manuf. Process. 1998, 13, 626. [Google Scholar] [CrossRef]
- Niu, C.; Niu, M.C.Y. Airframe Structural Design: Practical Design Information and Data on Aircraft Structures; Adaso Adastra Engineering Center: Hong Kong, 1999. [Google Scholar]
- Offringa, A.R. Thermoplastic composites—rapid processing applications. Compos. Part A Appl. Sci. Manuf. 1996, 27, 329–336. [Google Scholar] [CrossRef]
- Van Rijswijk, K.; Bersee, H.E.N. Reactive processing of textile fiber-reinforced thermoplastic composites – An overview. Compos. Part A Appl. Sci. Manuf. 2007, 38, 666–681. [Google Scholar] [CrossRef]
- Advani, S.G.; Hsiao, K.T. 1 - Introduction to composites and manufacturing processes. In Manufacturing Techniques for Polymer Matrix Composites (PMCs); Advani, S.G., Hsiao, K.-T., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 1–12. [Google Scholar] [CrossRef]
- Raza, S.F. Ultrasonic welding of thermoplastics. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2015. [Google Scholar]
- Stavrov, D.; Bersee, H.E.N. Resistance welding of thermoplastic composites—An overview. Compos. Part A Appl. Sci. Manuf. 2005, 36, 39–54. [Google Scholar] [CrossRef]
- Villegas, I.F.; Moser, L.; Yousefpour, A.; Mitschang, P.; Bersee, H.E. Process and performance evaluation of ultrasonic, induction and resistance welding of advanced thermoplastic composites. J. Thermoplast. Compos. Mater. 2013, 26, 1007–1024. [Google Scholar] [CrossRef]
- Brassard, D.; Dubé, M.; Tavares, J.R. Resistance welding of thermoplastic composites with a nanocomposite heating element. Compos. Part B Eng. 2019, 165, 779–784. [Google Scholar] [CrossRef]
- Wedgewood, R.A.; Hardy, P.E. Induction Welding of Thermoset Composite Adherends using Thermoplastic Interlayers and Susceptors. Proceedings of 28th International technical Conference Society for the Advancement of Material and Process Engineering, Seattle, WA, USA, 25–28 March 1996; pp. 850–861. [Google Scholar]
- Mahdi, S.; Kim, H.J.; Gama, B.A.; Yarlagadda, S.; Gillespie, J.W. A comparison of oven-cured and induction-cured adhesively bonded composite joints. J. Compos. Mater. 2003, 37, 519–542. [Google Scholar] [CrossRef]
- Ahmed, T.J.; Stavrov, D.; Bersee, H.E.N.; Beukers, A. Induction welding of thermoplastic composites—An overview. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1638–1651. [Google Scholar] [CrossRef]
- Chapter 11 - Induction Welding. In Handbook of Plastics Joining; William Andrew Publishing: Boston, MA, USA, 2009; pp. 113–120. [CrossRef]
- Pappadà, S.; Salomi, A.; Montanaro, J.; Passaro, A.; Caruso, A.; Maffezzoli, A. Fabrication of a thermoplastic matrix composite stiffened panel by induction welding. Aerosp. Sci. Technol. 2015, 43, 314–320. [Google Scholar] [CrossRef]
- Vijendra, B.; Sharma, A. Induction heated tool assisted friction-stir welding (i-FSW): A novel hybrid process for joining of thermoplastics. J. Manuf. Process. 2015, 20, 234–244. [Google Scholar] [CrossRef]
- Tolunay, M.N.; Dawson, P.R.; Wang, K.K. Heating and bonding mechanisms in ultrasonic welding of thermoplastics. Polym. Eng. Sci. 1983, 23, 726–733. [Google Scholar] [CrossRef]
- Harras, B.; Cole, K.C.; Vu-Khanh, T. Optimization of the Ultrasonic Welding of PEEK-Carbon Composites. J. Reinf. Plast. Compos. 1996, 15, 174–182. [Google Scholar] [CrossRef]
- Devine, J. Ultrasonic Plastics Welding Basics. Weld. J. 2001, 80, 29–33. [Google Scholar]
- Gutnik, V.G.; Gorbach, N.V.; Dashkov, A.V. Some Characteristics of Ultrasonic Welding of Polymers. Fibre Chem. 2002, 34, 426–432. [Google Scholar] [CrossRef]
- Liu, S.-J.; Chang, I.T. Optimizing the Weld Strength of Ultrasonically Welded Nylon Composites. J. Compos. Mater. 2002, 36, 611–624. [Google Scholar] [CrossRef]
- Tsujino, J.H.M.; Yoshikuni, M.; Miura, H.; Ueoka, T. Frequency Characteristics of Ultrasonic Plastic Welding. Jsme Int. J. 2006, 49, 634–641. [Google Scholar] [CrossRef] [Green Version]
- Balle, F.; Wagner, G.; Eifler, D. Ultrasonic Metal Welding of Aluminium Sheets to Carbon Fibre Reinforced Thermoplastic Composites. Adv. Eng. Mater. 2009, 11, 35–39. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Luo, Y.; Zhang, Z.; Wang, L. Study on heating process of ultrasonic welding for thermoplastics. J. Compos Mater 2010, 23, 647–664. [Google Scholar] [CrossRef]
- Villegas, I.F.; Bersee, H.E.N. Ultrasonic welding of advanced thermoplastic composites: An investigation on energy-directing surfaces. Adv. Polym. Technol. 2010, 29, 112–121. [Google Scholar] [CrossRef]
- Ultrasonics: Fundamentals, Technology and Applications, 3rd ed.; Bond, D.E.a.L.J. (Ed.) Taylor & Francis: Abingdon, UK, 2011. [Google Scholar]
- Ishii, Y.; Biwa, S. Ultrasonic evaluation of interlayer interfacial stiffness of multilayered structures. J. Appl Phys 2012, 111. [Google Scholar] [CrossRef] [Green Version]
- Wagner, G.; Balle, F.; Eifler, D. Ultrasonic Welding of Hybrid Joints. JOM 2012, 64, 401–406. [Google Scholar] [CrossRef]
- Ultrasonic, 3rd ed.; Bond, D.E.a.L.J. (Ed.) CRC Press (Taylor & Francis Group): Abingdon, UK, 2012. [Google Scholar]
- Al-Sarraf, Z.S. A Study of Ultrasonic Metal Welding; University of Glasgow: Glasgow, UK, 2013. [Google Scholar]
- Benatar, A. 12 - Ultrasonic welding of plastics and polymeric composites. In Power Ultrasonics; Gallego-Juárez, J.A., Graff, K.F., Eds.; Woodhead Publishing: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Zhang, H.; Fernandes, H.; Yu, L.; Hassler, U.; Genest, M.; Robitaille, F.; Joncas, S.; Sheng, Y.; Maldague, X. A comparative study of experimental and finite element analysis on submillimeter flaws by laser and ultrasonic excited thermography; SPIE: Maryland, USA, 2016; Volume 9861. [Google Scholar]
- Wang, K.; Shriver, D.; Li, Y.; Banu, M.; Hu, S.J.; Xiao, G.; Arinez, J.; Fan, H.-T. Characterization of weld attributes in ultrasonic welding of short carbon fiber reinforced thermoplastic composites. J. Manuf. Process. 2017, 29, 124–132. [Google Scholar] [CrossRef]
- Villegas, I.F.; van Moorleghem, R. Ultrasonic welding of carbon/epoxy and carbon/PEEK composites through a PEI thermoplastic coupling layer. Compos. Part A Appl. Sci. Manuf. 2018, 109, 75–83. [Google Scholar] [CrossRef]
- Goto, K.; Imai, K.; Arai, M.; Ishikawa, T. Shear and tensile joint strengths of carbon fiber-reinforced thermoplastics using ultrasonic welding. Compos. Part A Appl. Sci. Manuf. 2019, 116, 126–137. [Google Scholar] [CrossRef]
- Tao, W.; Su, X.; Wang, H.; Zhang, Z.; Li, H.; Chen, J. Influence mechanism of welding time and energy director to the thermoplastic composite joints by ultrasonic welding. J. Manuf. Process. 2019, 37, 196–202. [Google Scholar] [CrossRef]
- Ageorges, C.; Ye, L.; Hou, M. Advances in fusion bonding techniques for joining thermoplastic matrix composites: A review. Compos. Part A Appl. Sci. Manuf. 2001, 32, 839–857. [Google Scholar] [CrossRef]
- Liu, S.-J.; Chang, I.-T.; Hung, S.-W. Factors affecting the joint strength of ultrasonically welded polypropylene composites. Polym. Compos. 2001, 22, 132–141. [Google Scholar] [CrossRef]
- Rashli, R.; Bakar, E.A.; Kamaruddin, S. Determination of ultrasonic welding optimal parameters for thermoplastic material of manufacturing products. Sci. Eng 2013, 64, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Chuah, Y.K.; Chien, L.-H.; Chang, B.C.; Liu, S.-J. Effects of the shape of the energy director on far-field ultrasonic welding of thermoplastics. Polym. Eng. Sci. 2000, 40, 157–167. [Google Scholar] [CrossRef]
- Wagner, G.; Balle, F.; Eifler, D. Ultrasonic Welding of Aluminum Alloys to Fiber Reinforced Polymers. Adv. Eng. Mater. 2013, 15, 792–803. [Google Scholar] [CrossRef]
- Palardy, G.F.; Villegas, I. Smart ultrasonic welding of thermoplastic composites. In Proceedings of the American Society for Composites - 31st Technical Conference on Composite Materials, Williamsburg, VA, USA, 19–22 September 2016. [Google Scholar]
- Murray, R.E.; Roadman, J.; Beach, R. Fusion joining of thermoplastic composite wind turbine blades: Lap-shear bond characterization. Renew. Energy 2019, 140, 501–512. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Gohel, G.; Fai, L.K.; Barsotti, R.J. Fatigue response of ultrasonically welded carbon/Elium® thermoplastic composites. Mater. Lett. 2020, 264, 127362. [Google Scholar] [CrossRef]
- Taillemite, S. Arkema Gains Ground in Composites and Launches A Revolutionary Range of Elium Liquid Resins. Available online: http://www.arkema.com/en/media/news/news-details/Arkema-gains-ground-in-composites-and-launches-a-revolutionary-range-of-Elium-liquid-resins/ (accessed on 12 February 2017).
- Matadi Boumbimba, R.; Coulibaly, M.; Khabouchi, A.; Kinvi-Dossou, G.; Bonfoh, N.; Gerard, P. Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures. Compos. Struct. 2017, 160, 939–951. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Joshi, S.C. Low-velocity impact response of carbon fibre composites with novel liquid Methylmethacrylate thermoplastic matrix. Compos. Struct. 2018, 203, 696–708. [Google Scholar] [CrossRef]
- Obande, W.; Ray, D.; Ó Brádaigh, C.M. Viscoelastic and drop-weight impact properties of an acrylic-matrix composite and a conventional thermoset composite – A comparative study. Mater. Lett. 2019, 238, 38–41. [Google Scholar] [CrossRef]
- Kinvi-Dossou, G.; Matadi Boumbimba, R.; Bonfoh, N.; Garzon-Hernandez, S.; Garcia-Gonzalez, D.; Gerard, P.; Arias, A. Innovative acrylic thermoplastic composites versus conventional composites: Improving the impact performances. Compos. Struct. 2019, 217, 1–13. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Perrotey, P.; Joshi, S.C. Mode I fracture toughness and fractographic investigation of carbon fibre composites with liquid Methylmethacrylate thermoplastic matrix. Compos. Part B Eng. 2018, 134, 246–253. [Google Scholar] [CrossRef]
- Barbosa, L.C.M.; Bortoluzzi, D.B.; Ancelotti, A.C. Analysis of fracture toughness in mode II and fractographic study of composites based on Elium® 150 thermoplastic matrix. Compos. Part B Eng. 2019, 175, 107082. [Google Scholar] [CrossRef]
- Shanmugam, L.; Kazemi, M.E.; Rao, Z.; Lu, D.; Wang, X.; Wang, B.; Yang, L.; Yang, J. Enhanced mode I fracture toughness of UHMWPE fabric/thermoplastic laminates with combined surface treatments of polydopamine and functionalized carbon nanotubes. Compos. Part B Eng. 2019. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Perrotey, P.; Joshi, S.C. Enhanced Vibration damping and dynamic mechanical characteristics of composites with novel pseudo-thermoset matrix system. Compos. Struct. 2017. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Perrotey, P.; Joshi, S.C. Experimental investigation on suitability of carbon fibre thin plies for racquets. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2015, 230, 64–72. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Joshi, S.C.; Bert, A.; Yi Di, B.; Makam, R.; Gohel, G. Flexural characteristics of novel carbon methylmethacrylate composites. Compos. Commun. 2019, 13, 129–133. [Google Scholar] [CrossRef]
- Kazemi, M.E.; Shanmugam, L.; Lu, D.; Wang, X.; Wang, B.; Yang, J. Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium®. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105523. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Joshi, S.C.; Boon, Y.D. Experimental and Microscopic Investigation on Mechanical Performance of Textile Spread-tow Thin Ply Composites. Fibers Polym. 2019, 20, 1036–1045. [Google Scholar] [CrossRef]
- CHOMARAT: C-WEAVE™ 380T 12K, HS. Available online: https://composites.chomarat.com/wp-content/uploads/sites/2/2017/03/CW037-2 (accessed on 2 February 2020).
- Bhudolia, S.K.; Perrotey, P.; Joshi, S.C. Optimizing Polymer Infusion Process for Thin Ply Textile Composites with Novel Matrix System. Materials 2017, 10, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bostik SAF 30-5. Available online: https://www.bostik.com/globalassets/aec/tds/saf-30 (accessed on 2 February 2020).
- Villegas, I.F.; Palardy, G. Ultrasonic welding of CF/PPS composites with integrated triangular energy directors: Melting, flow and weld strength development. Compos. Interfaces 2017, 24, 515–528. [Google Scholar] [CrossRef] [Green Version]
- ASTM D5868-01(2014). In Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding; ASTM: West Conshohocken, PA, USA, 2014.
- Kairouz, K.C.; Matthews, F.L. Strength and failure modes of bonded single lap joints between cross-ply adherends. Composites 1993, 24, 475–484. [Google Scholar] [CrossRef]
- Guide to Ultrasonic Plastics Assembly; Dukane Intelligent Assembly Solutions: Bethany, CT, USA, 2011.
- Mason, R.L.; Gunst, R.F.; Hess, J.L. Statistical Design and Analysis of Experiments; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Barbosa, L.C.M.; de Souza, S.D.B.; Botelho, E.C.; Cândido, G.M.; Rezende, M.C. Fractographic evaluation of welded joints of PPS/glass fiber thermoplastic composites. Eng. Fail. Anal. 2019, 102, 60–68. [Google Scholar] [CrossRef]
Matrix | Hardener/Initiator | Mixing Ratio by Weight | Density (g/cm3) | Viscosity (cP) | Shear Strength (MPa) | Tg (Glass Transition Temperature) °C |
Elium® 150 | Peroxide | 100:3 | 1.2 | 100 @ 25 °C | 22 | 110 |
Adhesive | Mixing ratio | Open Time (min) | Fixture time (min) | Lap shear strength (MPa) | Curing temperature | |
SAF 30 5 | 1:10 | 2–3 | 8 | 22 | RT |
ASTM D5868−01 [61] | |
---|---|
Data measured | Force (N), Displacement (mm) or Strain (με) |
Mechanical Properties Calculated | Shear strength (MPa) |
Specimen dimensions | Length = 101.6 ± 0.2 mm, Width = 25.4 ± 0.1 mm, Thickness = 2 ± 0.01 mm, overlap area = 25.4 × 25.4 mm2 |
Feed rate | 13 mm/min |
LSS1 | Peak load/ total overlap area; Weld efficiency |
LSS2 | Peak load/ actual welded area; Weld quality |
Configuration | Weld Time (s) | Weld Pressure (Bar) | Hold Time (s) | Amplitude (%) |
---|---|---|---|---|
SHED_FLAT | 0.5, 1, 1.5, 2 | 3, 4, 5 | 2 | 75 |
Weld Time (s) | Weld Press (Bar) | LSS2 (MPa) | Std. Dev | LSS1 (MPa) | Std. Dev |
---|---|---|---|---|---|
0.5 | 3 | 13.43 | 1.14 | 4.29 | 0.36 |
1 | 14.83 | 1.13 | 8.85 | 0.09 | |
1.5 | 17.50 | 1.24 | 12.37 | 1.28 | |
2 | 8.42 | 1.14 | 6.92 | 0.84 | |
0.5 | 4 | 12.69 | 0.86 | 4.75 | 0.57 |
1 | 13.54 | 0.51 | 9.6 | 1.32 | |
1.5 | 13.32 | 1.07 | 10.45 | 0.65 | |
2 | 10.04 | 1.22 | 8.36 | 1.53 | |
0.5 | 5 | 10.41 | 1.14 | 5.53 | 0.89 |
1 | 11.15 | 0.32 | 6.87 | 0.13 | |
1.5 | 14.39 | 0.96 | 10.19 | 1.7 | |
2 | 10.60 | 0.60 | 8.55 | 1.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhudolia, S.K.; Gohel, G.; Leong, K.F.; Barsotti, R.J., Jr. Investigation on Ultrasonic Welding Attributes of Novel Carbon/Elium® Composites. Materials 2020, 13, 1117. https://doi.org/10.3390/ma13051117
Bhudolia SK, Gohel G, Leong KF, Barsotti RJ Jr. Investigation on Ultrasonic Welding Attributes of Novel Carbon/Elium® Composites. Materials. 2020; 13(5):1117. https://doi.org/10.3390/ma13051117
Chicago/Turabian StyleBhudolia, Somen K., Goram Gohel, Kah Fai Leong, and Robert J. Barsotti, Jr. 2020. "Investigation on Ultrasonic Welding Attributes of Novel Carbon/Elium® Composites" Materials 13, no. 5: 1117. https://doi.org/10.3390/ma13051117
APA StyleBhudolia, S. K., Gohel, G., Leong, K. F., & Barsotti, R. J., Jr. (2020). Investigation on Ultrasonic Welding Attributes of Novel Carbon/Elium® Composites. Materials, 13(5), 1117. https://doi.org/10.3390/ma13051117