Advances in Ultrasonic Welding of Thermoplastic Composites: A Review
Abstract
:1. Introduction
- Reducing the raw material cost
- Automation of manufacturing for mass production
- Bonding/joining methodologies for complex composite parts
- Recyclability offered by the final composite part
- Repair and structural health monitoring for damage detection
1.1. Composite Joining Methods
1.2. Advantages and Limitations of Ultrasonic Process
- Ultrasonic welding is one of the fastest joining methods as compared to other techniques, such as induction, resistance welding and arc welding, and hence is most suitable for mass production and automated processes [25].
- No foreign substances such as fillers are required for the ultrasonic welding of specimens [68]. Spot or seam welding can be carried out using this method.
- It is a clean joining process, as it does not generate fumes or sparks during welding, and thus, is considered environmentally friendly [44].
- The ultrasonic process is limited to the overlap and shear joints and to the maximum thickness it can weld. As it is difficult for the vibration to penetrate through the thicker parts and the oscillation in the bonding zone, it is not enough to produce a sound quality weld [56]. Currently, the thickness is limited to around 3 mm, due to the power of the equipment being specified [44].
- While using the ultrasonic welding process, the effects of some of the material properties are unavoidable. High stiffness, hardness and the damping factor being the material properties, affect the basis of the ultrasonic technique, which is to convert the vibration into thermal energy. These material properties change the amount of vibration energy required to be delivered to the interface [36].
- Ultrasonic welding works on the principle of mechanical vibration transmission, so audible noise may be produced from the resonance state, and is inevitable. In addition, due to vibrational cyclic loading, the chances of the specimen to fail in fatigue are more [70].
1.3. Applications of Ultrasonic Welding
1.4. Thermoplastic Polymers for Ultrasonic Welding
- Near-field welding
- Far-field welding
2. Ultrasonic Welding Technique
2.1. Theory of Ultrasonic Welding
2.2. Ultrasonic Welding Equipment
2.2.1. Ultrasonic Generator
2.2.2. Transducer
2.2.3. Booster
2.2.4. Sonotrode
2.2.5. Fixture
2.3. Types of Ultrasonic Welding
2.4. Energy Director
2.5. Ultrasonic Welding Parameters
2.5.1. Weld Time
2.5.2. Welding Frequency/Amplitude
2.5.3. Welding Pressure
2.6. Welding of TP Composites: Available Test Results
2.6.1. Thermoplastic to Thermoplastic (TP-TP) Composites
2.6.2. Thermoplastic Composites to Other Materials
3. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
UW | Ultrasonic welding |
ED | Energy Director |
TP | Thermoplastics |
TS | Thermosets |
ABS | Acrylonitrile butadiene styrene |
PVC | Polyvinyl chloride |
PET | Polyethylene terephthalate |
PBT | Polybutylene terephthalate |
PEEK | Polyether ether ketone |
PE | Polyethylene |
PA | Polyamide |
PP | Polypropylene |
GF | Glass fiber |
CF | Carbon fiber |
LSS | Lap shear strength |
PSU | Polysulfone |
PPS | Polyphenylene sulfide |
PS | Polystyrene |
PVB | Polyvinyl butyral |
PEI | Polyetherimide |
HAZ | Heat affected zone |
BHF | Blank holding force |
CBT | Cyclic Butylene Terephthalate |
References
- Chawla, K.K. Composite Materials, Science and Engineering; New York Inc.: New York, NY, USA, 1998. [Google Scholar]
- Bhudolia, S.K.; Kam, K.K.; Perrotey, P.; Joshi, S.C. Effect of fixation stitches on out-of-plane response of textile non-crimp fabric composites. J. Ind. Text. 2019, 48, 1151–1166. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Fischer, S.; He, P.G.; Yue, C.Y.; Joshi, S.C.; Yang, J.L. Design, Manufacturing and Testing of Filament Wound Composite Risers for Marine and Offshore Applications. Mater. Sci. Forum 2015, 813, 337–343. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Perrotey, P.; Joshi, S.C. Enhanced Vibration damping and dynamic mechanical characteristics of composites with novel pseudo-thermoset matrix system. Compos. Struct. 2017. [Google Scholar] [CrossRef]
- Taillemite, S. Arkema Gains Ground in Composites and Launches a Revolutionary Range of Elium Liquid Resins. Available online: http://www.arkema.com/en/media/news/news-details/Arkema-gains-ground-in-composites-and-launches-a-revolutionary-range-of-Elium-liquid-resins/ (accessed on 12 February 2017).
- Matadi Boumbimba, R.; Coulibaly, M.; Khabouchi, A.; Kinvi-Dossou, G.; Bonfoh, N.; Gerard, P. Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures. Compos. Struct. 2017, 160, 939–951. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Joshi, S.C. Low-velocity impact response of carbon fibre composites with novel liquid Methylmethacrylate thermoplastic matrix. Compos. Struct. 2018, 203, 696–708. [Google Scholar] [CrossRef]
- Obande, W.; Ray, D.; Ó Brádaigh, C.M. Viscoelastic and drop-weight impact properties of an acrylic-matrix composite and a conventional thermoset composite–A comparative study. Mater. Lett. 2019, 238, 38–41. [Google Scholar] [CrossRef]
- Kinvi-Dossou, G.; Matadi Boumbimba, R.; Bonfoh, N.; Garzon-Hernandez, S.; Garcia-Gonzalez, D.; Gerard, P.; Arias, A. Innovative acrylic thermoplastic composites versus conventional composites: Improving the impact performances. Compos. Struct. 2019, 217, 1–13. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Perrotey, P.; Joshi, S.C. Mode I fracture toughness and fractographic investigation of carbon fibre composites with liquid Methylmethacrylate thermoplastic matrix. Compos. Part B Eng. 2018, 134, 246–253. [Google Scholar] [CrossRef]
- Barbosa, L.C.M.; Bortoluzzi, D.B.; Ancelotti, A.C. Analysis of fracture toughness in mode II and fractographic study of composites based on Elium® 150 thermoplastic matrix. Compos. Part B Eng. 2019, 175, 107082. [Google Scholar] [CrossRef]
- Shanmugam, L.; Kazemi, M.E.; Rao, Z.; Lu, D.; Wang, X.; Wang, B.; Yang, L.; Yang, J. Enhanced mode I fracture toughness of UHMWPE fabric/thermoplastic laminates with combined surface treatments of polydopamine and functionalized carbon nanotubes. Compos. Part B Eng. 2019. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Perrotey, P.; Joshi, S.C. Experimental investigation on suitability of carbon fibre thin plies for racquets. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2016, 230, 64–72. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Joshi, S.C.; Bert, A.; Yi Di, B.; Makam, R.; Gohel, G. Flexural characteristics of novel carbon methylmethacrylate composites. Compos. Commun. 2019, 13, 129–133. [Google Scholar] [CrossRef]
- Kazemi, M.E.; Shanmugam, L.; Lu, D.; Wang, X.; Wang, B.; Yang, J. Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium®. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105523. [Google Scholar] [CrossRef]
- Benatar, A. 12 - Ultrasonic welding of plastics and polymeric composites. In Power Ultrasonics, Gallego; Juárez, J.A., Graff, K.F., Eds.; Woodhead Publishing: Oxford, UK, 2015; pp. 295–312. [Google Scholar] [CrossRef]
- Stokes, V.K. Joining methods for plastics and plastic composites: An overview. Polym. Eng. Sci. 1989, 29, 1310–1324. [Google Scholar] [CrossRef]
- Gilmore, C.M. Advanced Composites Manufacturing By Timothy G. Gutowski. Mater. Manuf. Process. 1998, 13, 626. [Google Scholar] [CrossRef]
- Niu, C.; Niu, M.C.Y. Airframe Structural Design: Practical Design Information and Data on Aircraft Structures; Adaso Adastra Engineering Center: Hong Kong, China, 1999. [Google Scholar]
- Offringa, A.R. Thermoplastic composites—Rapid processing applications. Compos. Part A Appl. Sci. Manuf. 1996, 27, 329–336. [Google Scholar] [CrossRef]
- Van Rijswijk, K.; Bersee, H.E.N. Reactive processing of textile fiber-reinforced thermoplastic composites—An overview. Compos. Part A Appl. Sci. Manuf. 2007, 38, 666–681. [Google Scholar] [CrossRef]
- Advani, S.G.; Hsiao, K.T. Introduction to composites and manufacturing processes. In Manufacturing Techniques for Polymer Matrix Composites (PMCs); Advani, S.G., Hsiao, K.-T., Eds.; Woodhead Publishing: Oxford, UK, 2012; pp. 1–12. [Google Scholar] [CrossRef]
- Raza, S.F. Ultrasonic Welding of Thermoplastics. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2015. [Google Scholar]
- Stavrov, D.; Bersee, H.E.N. Resistance welding of thermoplastic composites-an overview. Compos. Part A Appl. Sci. Manuf. 2005, 36, 39–54. [Google Scholar] [CrossRef]
- Villegas, I.F.; Moser, L.; Yousefpour, A.; Mitschang, P.; Bersee, H.E. Process and performance evaluation of ultrasonic, induction and resistance welding of advanced thermoplastic composites. J. Thermoplast. Compos. Mater. 2013, 26, 1007–1024. [Google Scholar] [CrossRef]
- Brassard, D.; Dubé, M.; Tavares, J.R. Resistance welding of thermoplastic composites with a nanocomposite heating element. Compos. Part B Eng. 2019, 165, 779–784. [Google Scholar] [CrossRef]
- Wedgewood, A.R.; Hardy, P.E. Induction Welding of Thermoset Composite Adherends using Thermoplastic Interlayers and Susceptors. In Proceedings of the 28th International Technical Conference Society for the Advancement of Material and Process Engineering, Seattle, WA, USA, 1996; pp. 850–861. [Google Scholar]
- Mahdi, S.; Kim, H.J.; Gama, B.A.; Yarlagadda, S.; Gillespie, J.W. A comparison of oven-cured and induction-cured adhesively bonded composite joints. J. Compos. Mater. 2003, 37, 519–542. [Google Scholar] [CrossRef]
- Ahmed, T.J.; Stavrov, D.; Bersee, H.E.N.; Beukers, A. Induction welding of thermoplastic composites—An overview. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1638–1651. [Google Scholar] [CrossRef]
- Troughton, M.J. Chapter 11—Induction Welding. In Handbook of Plastics Joining, 2nd ed.; William Andrew Publishing: Boston, MA, USA, 2009; pp. 113–120. [Google Scholar] [CrossRef]
- Pappadà, S.; Salomi, A.; Montanaro, J.; Passaro, A.; Caruso, A.; Maffezzoli, A. Fabrication of a thermoplastic matrix composite stiffened panel by induction welding. Aerosp. Sci. Technol. 2015, 43, 314–320. [Google Scholar] [CrossRef]
- Vijendra, B.; Sharma, A. Induction heated tool assisted friction-stir welding (i-FSW): A novel hybrid process for joining of thermoplastics. J. Manuf. Process. 2015, 20, 234–244. [Google Scholar] [CrossRef]
- Tolunay, M.N.; Dawson, P.R.; Wang, K.K. Heating and bonding mechanisms in ultrasonic welding of thermoplastics. Polym. Eng. Sci. 1983, 23, 726–733. [Google Scholar] [CrossRef]
- Harras, B.; Cole, K.C.; Vu-Khanh, T. Optimization of the Ultrasonic Welding of PEEK-Carbon Composites. J. Reinf. Plast. Compos. 1996, 15, 174–182. [Google Scholar] [CrossRef]
- Devine, J. Ultrasonic Plastics Welding Basics. Weld. J. 2001, 80, 29–33. [Google Scholar]
- Gutnik, V.G.; Gorbach, N.V.; Dashkov, A.V. Some Characteristics of Ultrasonic Welding of Polymers. FIBER Chem. 2002, 34, 426–432. [Google Scholar] [CrossRef]
- Liu, S.-J.; Chang, I.T. Optimizing the Weld Strength of Ultrasonically Welded Nylon Composites. J. Compos. Mater. 2002, 36, 611–624. [Google Scholar] [CrossRef]
- Tsujino, J.; Hongoh, M.; Yoshikuni, M.; Miura, H.; Ueoka, T. Frequency Characteristics of Ultrasonic Plastic Welding. JSME Int. J. 2006, 49, 634–641. [Google Scholar] [CrossRef] [Green Version]
- Balle, F.; Wagner, G.; Eifler, D. Ultrasonic Metal Welding of Aluminium Sheets to Carbon Fibre Reinforced Thermoplastic Composites. Adv. Eng. Mater. 2009, 11, 35–39. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Luo, Y.; Zhang, Z.; Wang, L. Study on heating process of ultrasonic welding for thermoplastics. J. Compos. Mater. 2010, 23, 647–664. [Google Scholar] [CrossRef]
- Villegas, I.F.; Bersee, H.E.N. Ultrasonic welding of advanced thermoplastic composites: An investigation on energy-directing surfaces. Adv. Polym. Technol. 2010, 29, 112–121. [Google Scholar] [CrossRef]
- Ensminger, D.; Bond, L.J. Ultrasonics: Fundamentals, Technology and Applications, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Ishii, Y.; Biwa, S. Ultrasonic evaluation of interlayer interfacial stiffness of multilayered structures. J. Appl. Phys. 2012, 111. [Google Scholar] [CrossRef] [Green Version]
- Wagner, G.; Balle, F.; Eifler, D. Ultrasonic Welding of Hybrid Joints. JOM 2012, 64, 401–406. [Google Scholar] [CrossRef]
- Ensminger, D.; Bond, L.J. Ultrasonics: Fundamentals, Technologies, and Applications, 3rd ed.; CRC Press (Taylor & Francis Group): Boca Raton, FL, USA, 2012. [Google Scholar]
- Al-Sarraf, Z.S. A Study of Ultrasonic Metal Welding. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2013. [Google Scholar]
- Zhang, H.; Fernandes, H.; Yu, L.Y.; Hassler, U.; Genest, M.; Robitaille, F.; Joncas, S.; Sheng, Y.L.; Maldague, X. A comparative study of experimental and finite element analysis on submillimeter flaws by laser and ultrasonic excited thermography. In Thermosense: Thermal Infrared Applications Xxxviii; Zalameda, J.N., Bison, P., Eds.; International Society for Optics and Photonics: Washington, DC, USA, 2016; Volume 9861. [Google Scholar]
- Wang, K.; Shriver, D.; Li, Y.; Banu, M.; Hu, S.J.; Xiao, G.; Arinez, J.; Fan, H.-T. Characterization of weld attributes in ultrasonic welding of short carbon fiber reinforced thermoplastic composites. J. Manuf. Process. 2017, 29, 124–132. [Google Scholar] [CrossRef]
- Villegas, I.F.; van Moorleghem, R. Ultrasonic welding of carbon/epoxy and carbon/PEEK composites through a PEI thermoplastic coupling layer. Compos. Part A Appl. Sci. Manuf. 2018, 109, 75–83. [Google Scholar] [CrossRef]
- Goto, K.; Imai, K.; Arai, M.; Ishikawa, T. Shear and tensile joint strengths of carbon fiber-reinforced thermoplastics using ultrasonic welding. Compos. Part A Appl. Sci. Manuf. 2019, 116, 126–137. [Google Scholar] [CrossRef]
- Tao, W.; Su, X.; Wang, H.; Zhang, Z.; Li, H.; Chen, J. Influence mechanism of welding time and energy director to the thermoplastic composite joints by ultrasonic welding. J. Manuf. Process. 2019, 37, 196–202. [Google Scholar] [CrossRef]
- Ochôa, P.; Villegas, I.F.; Groves, R.M.; Benedictus, R. Diagnostic of manufacturing defects in ultrasonically welded thermoplastic composite joints using ultrasonic guided waves. NDT E Int. 2019, 107, 102126. [Google Scholar] [CrossRef]
- Vendan, S.A.; Natesh, M.; Garg, A.; Gao, L. Ultrasonic Welding of Polymers. In Confluence of Multidisciplinary Sciences for Polymer Joining; Springer: Singapore, 2019; pp. 73–101. [Google Scholar] [CrossRef]
- Lässig, R.; Eisenhut, M.; Mathias, A.; Schulte, R.T.; Peters, F.; Kühmann, T.; Waldmann, T.; Begemann, W. Series Production of High-Strength Composites Perspectives for the German Engineering Industry; Technical Report; Roland Berger Strategy Consultants: Munich, Germany, 2012. [Google Scholar]
- Adams, R.D.; Adams, R.D.; Comyn, J.; Wake, W.C.; Wake, W.C. Structural Adhesive Joints in Engineering, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Bolt, S. Ultrasonic Plastic Welding of Carbon Fiber Reinforced Polyamide 6 to Aluminium and Steel; Delft University of Technology: Delft, The Netherlands, 2014. [Google Scholar]
- Costa, A.P.D.; Botelho, E.C.; Costa, M.L.; Narita, N.E.; Tarpani, J.R. A Review of Welding Technologies for Thermoplastic Composites in Aerospace Applications. J. Aerosp. Technol. Manag. 2012, 4, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Rudolf, R.; Mitschang, P.; Neitzel, M.; Rueckert, C. Welding of High-Performance Thermoplastic Composites. Polym. Polym. Compos. 1999, 7, 309–315. [Google Scholar]
- Reincke, T.; Hartwig, S.; Dilger, K. Improvement of the adhesion of continuously manufactured multi-material joints by application of thermoplastic adhesive film. Int. J. Adhes. Adhes. 2019, 93, 102321. [Google Scholar] [CrossRef]
- Mariam, M.; Afendi, M.; Abdul Majid, M.S.; Ridzuan, M.J.M.; Gibson, A.G. Tensile and fatigue properties of single lap joints of aluminium alloy/glass fiber reinforced composites fabricated with different joining methods. Compos. Struct. 2018, 200, 647–658. [Google Scholar] [CrossRef] [Green Version]
- Kweon, J.-H.; Jung, J.-W.; Kim, T.-H.; Choi, J.-H.; Kim, D.-H. Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding. Compos. Struct. 2006, 75, 192–198. [Google Scholar] [CrossRef]
- Ageorges, C.; Ye, L.; Hou, M. Advances in fusion bonding techniques for joining thermoplastic matrix composites: A review. Compos. Part A Appl. Sci. Manuf. 2001, 32, 839–857. [Google Scholar] [CrossRef]
- Shi, H.; Villegas, I.F.; Octeau, M.-A.; Bersee, H.E.N.; Yousefpour, A. Continuous resistance welding of thermoplastic composites: Modelling of heat generation and heat transfer. Compos. Part A Appl. Sci. Manuf. 2015, 70, 16–26. [Google Scholar] [CrossRef]
- Barbosa, L.C.M.; de Souza, S.D.B.; Botelho, E.C.; Cândido, G.M.; Rezende, M.C. Fractographic evaluation of welded joints of PPS/glass fiber thermoplastic composites. Eng. Fail. Anal. 2019, 102, 60–68. [Google Scholar] [CrossRef]
- Knapp, W.; Clement, S.; Franz, C.; Oumarou, M.; Renard, J. Laser-bonding of long fiber thermoplastic composites for structural assemblies. Phys. Procedia 2010, 5, 163–171. [Google Scholar] [CrossRef]
- Arul, S.; Rajasekar, R.; Murugesapandian, K.; Selwin, M. Vibration and Ultrasonic Welding Behaviour of Polymers and Polymer Composites—A Review. J. Chem. Pharm. Sci. 2017, 3. [Google Scholar]
- Yousefpour, A.; Hojjati, M.; Immarigeon, J.-P. Fusion Bonding/Welding of Thermoplastic Composites. J. Thermoplast. Compos. Mater. 2004, 17, 303–341. [Google Scholar] [CrossRef]
- Brown, L. Copper Development Association Cost-Effective Manufacturing: Joining of Copper and Copper Alloys. CDA Publ. 1994, 98, 1–64. [Google Scholar]
- Patel, V.K.; Bhole, S.D.; Chen, D.L. Influence of ultrasonic spot welding on microstructure in a magnesium alloy. Scr. Mater. 2011, 65, 911–914. [Google Scholar] [CrossRef]
- Ganesh, M.; Praba Rajathi, R. Experimental study on ultrasonic welding of aluminum sheet to copper sheet. Int. J. Res. Eng. Technol. 2013, 2, 161–166. [Google Scholar]
- Grewell, D.A.; Benatar, A.; Park, J.B. Plastics and Composites Welding Handbook; Hanser Gardner Publications: Munich, Germany, 2013. [Google Scholar]
- Wagner, G.; Balle, F.; Eifler, D. Ultrasonic Welding of Aluminum Alloys to Fiber Reinforced Polymers. Adv. Eng. Mater. 2013, 15, 792–803. [Google Scholar] [CrossRef]
- Palardy, G.; Villegas, I. Smart ultrasonic welding of thermoplastic composites. In Proceedings of the American Society for Composites-31st Technical Conference (ASC), Williamsburg, VA, USA, 19–23 September 2016. [Google Scholar]
- Yeh, H.J. Ultrasonic welding of medical plastics. In Joining and Assembly of Medical Materials and Devices; Zhou, Y., Breyen, M.D., Eds.; Woodhead Publishing: Oxford, UK, 2013; pp. 296–323. [Google Scholar] [CrossRef]
- Polymers: Characteristics and Compatibility for Ultrasonic Assembly. Available online: http://www.beckmannconverting.com/img/technologies/branson_PW-01CharComp-474294.pdf (accessed on 24 September 2019).
- Liu, S.-J.; Chang, I.-T.; Hung, S.-W. Factors affecting the joint strength of ultrasonically welded polypropylene composites. Polym. Compos. 2001, 22, 132–141. [Google Scholar] [CrossRef]
- Suresh, K.S.; Rani, M.R.; Prakasan, K.; Rudramoorthy, R. Modeling of temperature distribution in ultrasonic welding of thermoplastics for various joint designs. J. Mater. Process. Technol. 2007, 186, 138–146. [Google Scholar] [CrossRef]
- Lionetto, F.; Maffezzoli, A. Polymer characterization by ultrasonic wave propagation. Adv. Polym. Technol. 2008, 27, 63–73. [Google Scholar] [CrossRef]
- Hopmann, C.; Aaken, A. Ultrasonic welding of polyamide—Influence of moisture on the process relevant material properties. Weld. World 2014, 58, 787–793. [Google Scholar] [CrossRef]
- Chapter 2 - Ultrasonic Welding. In Handbook of Plastics Joining, 2nd ed.; Troughton, M.J. (Ed.) William Andrew Publishing: Boston, MA, USA, 2009; pp. 15–35. [Google Scholar]
- Stoehr, N.; Baudrit, B.; Haberstroh, E.; Nase, M.; Heidemeyer, P.; Bastian, M. Ultrasonic welding of plasticized PLA films. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Potente, H. Ultrasonic welding—Principles & theory. Mater. Des. 1984, 5, 228–234. [Google Scholar] [CrossRef]
- Villegas, I.F. Strength development versus process data in ultrasonic welding of thermoplastic composites with flat energy directors and its application to the definition of optimum processing parameters. Compos. Part A Appl. Sci. Manuf. 2014, 65, 27–37. [Google Scholar] [CrossRef]
- Villegas, I.F. In situ monitoring of ultrasonic welding of thermoplastic composites through power and displacement data. J. Thermoplast. Compos. Mater. 2015, 28, 66–85. [Google Scholar] [CrossRef]
- Lee, S. Process and Quality Characterization for Ultrasonic Welding of Lithium-Ion Batteries. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2013. [Google Scholar]
- Joint Designs for Ultrasonic Welding. Available online: https://www.sonics.com/site/assets/files/2951/joint-designs-for-ultrasonic-welding.pdf (accessed on 11 March 2020).
- Ultrasonic Plastic Joining. BRANSON. Available online: https://www.emerson.com/documents/automation/brochure-plastic-joining-en-5181378.pdf (accessed on 11 March 2020).
- Rashli, R.; Bakar, E.A.; Kamaruddin, S. Determination of ultrasonic welding optimal parameters for thermoplastic material of manufacturing products. Sci. Eng. 2013, 64, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Chuah, Y.K.; Chien, L.-H.; Chang, B.C.; Liu, S.-J. Effects of the shape of the energy director on far-field ultrasonic welding of thermoplastics. Polym. Eng. Sci. 2000, 40, 157–167. [Google Scholar] [CrossRef]
- Fernandez Villegas, I.; Valle Grande, B.; Bersee, H.E.N.; Benedictus, R. A comparative evaluation between flat and traditional energy directors for ultrasonic welding of CF/PPS thermoplastic composites. Compos. Interfaces 2015, 22, 717–729. [Google Scholar] [CrossRef]
- Villegas, I.F. Ultrasonic Welding of Thermoplastic Composites. Front. Mater. 2019, 6. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Banu, M.; Li, J.; Guo, W.; Khan, H. Effect of interfacial preheating on welded joints during ultrasonic composite welding. J. Mater. Process. Technol. 2017, 246, 116–122. [Google Scholar] [CrossRef]
- Bakavos, D.; Prangnell, P.B. Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet. Mater. Sci. Eng. A 2010, 527, 6320–6334. [Google Scholar] [CrossRef]
- Nonhof, C.J.; Luiten, G.A. Estimates for process conditions during the ultrasonic welding of thermoplastics. Polym. Eng. Sci. 1996, 36, 1177–1183. [Google Scholar] [CrossRef]
- Senders, F.; van Beurden, M.; Palardy, G.; Villegas, I.F. Zero-flow: A novel approach to continuous ultrasonic welding of CF/PPS thermoplastic composite plates. Adv. Manuf. Polym. Compos. Sci. 2016, 2, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Palardy, G.; Villegas, I.F. On the effect of flat energy directors thickness on heat generation during ultrasonic welding of thermoplastic composites. Compos. Interfaces 2017, 24, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Villegas, I.F.; Palardy, G. Ultrasonic welding of CF/PPS composites with integrated triangular energy directors: Melting, flow and weld strength development. Compos. Interfaces 2017, 24, 515–528. [Google Scholar] [CrossRef] [Green Version]
- Zhi, Q.; Tan, X.-R.; Lu, L.; Chen, L.-Y.; Li, J.-C.; Liu, Z.-X. Decomposition of ultrasonically welded carbon fiber/polyamide 66 and its effect on weld quality. Weld. World 2017, 61, 1017–1028. [Google Scholar] [CrossRef]
- Zhi, Q.; Tan, X.R.; Liu, Z.X. Effect of moisture on the ultrasonic welding of carbon-fiber-reinforced polyamide 66 composite. Weld. J. 2017, 96, 185s–192s. [Google Scholar]
- Zhi, Q.; Tan, X.; Liu, Z. Effects of Preheat Treatment on the Ultrasonic Welding of Carbon-Fiber-Reinforced Polyamide 66 Composite. Weld. J. 2017, 96, 429S–438S. [Google Scholar]
- Lu, L.; Zhi, Q.; Gao, Y.-H.; Liu, Z.-X.; Wang, P.-C. Repairing Ultrasonic Welded Carbon Fiber-Reinforced Nylon 66 Composite. Weld. J. 2017, 96, 439S–450S. [Google Scholar]
- Zhi, Q.; Gao, Y.-H.; Lu, L.; Liu, Z.-X.; Wang, P.-C. Online Inspection of Weld Quality in Ultrasonic Welding of Carbon Fiber/Polyamide 66 without Energy Directors. Weld. J. 2018, 97, 65s–74s. [Google Scholar]
- Gao, Y.-H.; Zhi, Q.; Lu, L.; Liu, Z.-X.; Wang, P.-C. Ultrasonic Welding of Carbon Fiber Reinforced Nylon 66 Composite Without Energy Director. J. Manuf. Sci. Eng. 2018, 140. [Google Scholar] [CrossRef]
- Kalyan Kumar, R.; Omkumar, M. Investigation and characterization of ultrasonically welded GF/PA6T composites. Mater. Today Proc. 2019. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Gohel, G.; Kah Fai, L.; Barsotti, R.J. Fatigue response of ultrasonically welded carbon/Elium® thermoplastic composites. Mater. Lett. 2020, 264, 127362. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Gohel, G.; Fai, L.K.; Barsotti, R.J., Jr. Investigation on Ultrasonic Welding Attributes of Novel Carbon/Elium® Composites. Materials 2020, 13, 1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhury, M.R.; Debnath, K. Analysis of tensile failure load of single-lap green composite specimen welded by high-frequency ultrasonic vibration. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Benatar, A.; Gutowski, T.G. Ultrasonic welding of PEEK graphite APC-2 composites. Polym. Eng. Sci. 1989, 29, 1705–1721. [Google Scholar] [CrossRef]
- Thang, N.V.; Lenfeld, P. The Effect of Different Heights and Angles of Energy Director on Interface Temperature for Ultrasonic Welding of Thermoplastics. IOP Conf. Ser. Mater. Sci. Eng. 2018, 371, 012053. [Google Scholar] [CrossRef]
- Li, Y.; Arinez, J.; Liu, Z.; Hwa Lee, T.; Fan, H.-T.; Xiao, G.; Banu, M.; Jack Hu, S. Ultrasonic Welding of Carbon Fiber Reinforced Composite With Variable Blank Holding Force. J. Manuf. Sci. Eng. 2018, 140. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Shen, J.; Lee, T.H.; Banu, M.; Hu, S.J. Weld Quality Prediction in Ultrasonic Welding of Carbon Fiber Composite Based on an Ultrasonic Wave Transmission Model. J. Manuf. Sci. Eng. 2019, 141. [Google Scholar] [CrossRef]
- Palardy, G.; Shi, H.; Levy, A.; Le Corre, S.; Fernandez Villegas, I. A study on amplitude transmission in ultrasonic welding of thermoplastic composites. Compos. Part A Appl. Sci. Manuf. 2018, 113, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.Y.; Zhi, Q.; Li, J.-C.; Liu, Z.-X.; Wang, P.-C. Single-Sided Ultrasonic Welding of CF/Nylon 6 Composite without Energy Directors. Weld. J. 2018, 97, 17S–25S. [Google Scholar] [CrossRef]
- Zhi, Q.; Lu, L.; Liu, Z.X.; Wang, P.C. Influence of horn misalignment on weld quality in ultrasonic welding of carbon fiber/polyamide 66 composite; experiments showed horn misalignment of more than 4 cleg resulted in a significant decrease in weld area, weld strength, and cosmetic quality. Weld. J. 2018, 97, 133S–143S. [Google Scholar] [CrossRef]
- Don, R.C.; Gillespie, J.W., Jr.; McKnight, S.H. Bonding Techniques for High Performance Thermoplastic Compositions. U.S. Patent 5,643,390A, 1 July 1997. [Google Scholar]
- Fernandez Villegas, I.; Vizcaino Rubio, P. On avoiding thermal degradation during welding of high-performance thermoplastic composites to thermoset composites. Compos. Part A Appl. Sci. Manuf. 2015, 77, 172–180. [Google Scholar] [CrossRef]
- Lionetto, F.; Morillas, M.N.; Pappadà, S.; Buccoliero, G.; Fernandez Villegas, I.; Maffezzoli, A. Hybrid welding of carbon-fiber reinforced epoxy based composites. Compos. Part A Appl. Sci. Manuf. 2018, 104, 32–40. [Google Scholar] [CrossRef]
- Tsiangou, E.; Teixeira de Freitas, S.; Fernandez Villegas, I.; Benedictus, R. Investigation on energy director-less ultrasonic welding of polyetherimide (PEI)- to epoxy-based composites. Compos. Part B Eng. 2019, 173, 107014. [Google Scholar] [CrossRef]
- Tooren, M.J.L.V. Method for Bonding a Thermoplastic Polymer to a Thermosetting Polymer Component. U.S. Patent 9,211,674, 15 December 2015. [Google Scholar]
- McKnight, S.H.; Fink, B.K.; Monnard, V.; Bourban, P.E.; Manson, J.A.E. Processing and Characterization of Welded Bonds between Thermoset and Thermoplastic Composites; Army Research Lab Aberdeen Proving: Ground, MD, USA, 2001. [Google Scholar]
- Heitzmann, M.T.; Hou, M.; Veidt, M.; Vandi, L.J.; Paton, R. Morphology of an Interface between Polyetherimide and Epoxy Prepreg. Adv. Mater. Res. 2012, 393, 184–188. [Google Scholar] [CrossRef]
- Dawei, Z.; Qi, Z.; Xiaoguang, F.; Shengdun, Z. Review on Joining Process of Carbon Fiber-Reinforced Polymer and Metal: Methods and Joining Process. Rare Met. Mater. Eng. 2018, 47, 3686–3696. [Google Scholar] [CrossRef]
- Dawei, Z.; Qi, Z.; Xiaoguang, F.; Shengdun, Z. Review on Joining Process of Carbon Fiber-reinforced Polymer and Metal: Applications and Outlook. Rare Met. Mater. Eng. 2019, 48, 44–54. [Google Scholar]
- Al-Obaidi, A.J. Ultrasonic Joining of Metal-Polymer Surfaces. Ph.D. Thesis, The University of Sheffield, Sheffield, UK, 2017. [Google Scholar]
- Bhudolia, S.K.; Kam, K.K.; Joshi, S.C. Mechanical and vibration response of insulated hybrid composites. J. Ind. Text. 2018, 47, 1887–1907. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Joshi, S.C.; Boon, Y.D. Experimental and Microscopic Investigation on Mechanical Performance of Textile Spread-tow Thin Ply Composites. Fibers Polym. 2019, 20, 1036–1045. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Joshi, S.C.; Bert, A.; Gohel, G.R.; Raama, M. Energy Characteristics and Failure Mechanisms for Textile Spread Tow Thin Ply Thermoplastic Composites under Low-velocity Impact. Fibers Polym. 2019, 20, 1716–1725. [Google Scholar] [CrossRef]
Amorphous Polymers | Semi-Crystalline Polymers |
---|---|
Distinctive Properties | |
Random molecular arrangement | Orderly molecular arrangement |
Broad softening temperature/glass transition temperature (Tg) | Sharp melting point (Tm) |
Easy to thermoform | Difficult to thermoform |
Rigid polymers | Soft polymers |
Tough, Rigid, Good Creep and Chemical Resistance | Excellent Chemical Resistance |
Transparent look | Opaque look |
e.g., Acrylonitrile butadiene styrene (ABS), Acrylic, polycarbonate, polystyrene, Polyvinyl chloride (PVC) | e.g., Nylon, Polyethylene terephthalate (PET), Polybutylene terephthalate (PBT), Polyether ether ketone (PEEK), polyethylene |
Ultrasonic Welding of Thermoplastic Composites to Thermoplastic Composite | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | Author | Material System | Factors Studied | ED | Weld Time | Weld Pressure/Force | Amplitude | Frequency | Optimised Weld Strength | Reference |
2001 | Liu et al. | GF/PP | Effect of ED, weld time and weld pressure | TED, RED, SHED | 0.25 s, 0.3 s, 0.33 s | 2.5, 3, 3.5 bar | 25, 36, 40 µm | 20 kHz | 13.77 MPa | [76] |
2002 | Liu et al. | GF/Nylon 6 | Effect of ED, weld time and weld pressure | TED, RED, SHED | 0.25 s, 0.32 s, 0.4 s | 2, 3, 4 bar | 25, 36, 40 µm | 20 kHz | 17.11 MPa | [37] |
2010 | Villegas et al. | CF/PEI_CF/PEI | NA | Triangular ED | 3.5 s | 4 MPa | 50 µm | 20 kHz | 32–36 MPa | [41] |
2014 | Villegas et al. | CF/PEI | Effect of weld pressure | Flat ED (0.25 mm) | Displacement mode | 300 N and 1500 N | 51.8 and 86.2 µm | 20 kHz | 37.3 MPa | [83] |
2015 | Villegas et al. | CF/PPS | Effect of ED | TED, Flat | Displacement mode | 1000 N | 86.2 µm | 20 kHz | 37.1 MPa | [90] |
2016 | Senders et al. | CF/PPS | Effect of ED | Flat ED (0.08, 0.16, 0.24 mm) | Displacement mode | 1000 N | 86.2 µm | 20 kHz | 36.5 MPa | [95] |
2017 | Palardy et al. | CF/PEI | Effect of ED | Flat ED (0.5, 0.25, 0.06 mm) | Displacement mode | 1000 N | 86.2 µm | 20 kHz | 37.3 MPa | [96] |
2017 | Villegas et al. | CF/PPS | NA | TED | Displacement mode | 1000 N | 86.2 µm | 20 kHz | 37.1 MPa | [97] |
2017 | Zhi et al. | CF/PA 66 | Effect of weld energy/ thermal decomposition | NA | NA | 0.17 MPa | NA | 20 kHz | NA | [98] |
2017 | Zhi et al. | CF/PA66 | Effect of moisture content/ Amplitude | NA | NA | 0.17 MPa | NA | 20 kHz | NA | [99] |
2017 | Zhi et al. | CF/PA66 | Effect of pre-heating | NA | NA | 0.17 MPa | NA | 20 kHz | NA | [100] |
2017 | Lu et al. | CF/Nylon 66 | Effect of repair on welded joint | NA | NA (Energy controlled mode) | NA | NA | 20 kHz | NA | [101] |
2018 | Zhi et al. | CF/PA 66 | Effect of weld time and weld pressure | NA | 1.3 s, 1.7 s, 2.1 s, 2.5 s, 2.9 s, 3.3 s | 0.13, 0.14, 0.15, 0.17, 0.2 MPa | 25 µm | 20 kHz | NA | [102] |
2018 | Gao et al. | CF/Nylon 66 | Feasibility to weld 4 mm-thick laminate | No ED | 1.3 s, 1.7 s, 2.1 s, 2.5 s, 2.9 s, 3.3 s | 0.13, 0.14, 0.15, 0.17, 0.2 MPa | NA | 20 kHz | 5.2 kN | [103] |
2019 | Goto et al. | CF/PA6 | Effect of energy | Flat ED (0.3 mm) | NA (Energy controlled mode) | 940 N | 90 µm | 15 kHz | 40 MPa | [50] |
2019 | Tao et al. | CF/PEEK | Effect of weld time | Flat ED (0.45 mm) | 0.7 s, 0.8 s, 0.9 s, 1 s, 1.1 s | 0.3 MPa | 25 µm | 60 kHz | 28 MPa | [51] |
2019 | Kalyan Kumar et al. | GF/PA | Effect of weld time | NA | 0.5 s, 0.55 s, 0.6 s | 4 Bar | NA | 20 kHz | 3.1 kN | [104] |
2020 | Bhudolia et al. | CF/Elium® | Fatigue response | NA | NA | NA | NA | 20 kHz | NA | [105] |
2020 | Bhudolia et al. | CF/Elium® | Effect of weld time | Semicircular ED | 0.5 s, 1 s, 1.5 s, 2 s | 3 bar, 4 bar, 5 bar | 48.75 µm | 20 kHz | 17.5 MPa | [106] |
2020 | Choudhury et al. | Bamboo fiber/ PLA | Effect of weld time, hold time, weld pressure | NA | 1 s, 3 s, 5 s, 7 s, 9 s | 1 bar, 2 bar, 3 bar, 4 bar, 5 bar | NA | 20 kHz | 3.7 kN | [107] |
Ultrasonic Welding of Thermoplastic Composites to Other Materials | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | Author | Material System | Factors Studied | ED | Weld Time | Weld Pressure/Force | Amplitude | Frequency | Optimised Weld Strength | Reference |
2009 | Balle et al. | CF/PA66- Aluminum | Effect Al alloys on shear strength | NA | NA/2160 Ws Weld energy | 140 N | 38–42 µm | 20 kHz | 30 MPa | [39] |
2013 | Wagner et al. | CF/PA66- Aluminum | Effect Al alloys and heat treatment on shear strength | NA | NA/2160 Ws Weld energy | Variable | 38–42 µm | 20 kHz | 58 MPa | [72] |
2015 | Villegas et al. | CF/PEEK-CF/Epoxy | NA | Flat PEEK Film (0.25 mm) | 460 ms/830 ms (heating time) | 1500 N/300 N | 90 µm/ 72 µm | 20 kHz | NA | [116] |
2018 | Villegas et al. | CF/PEEK-CF/Epoxy | Effect of PEI film | Flat PEI Film (0.05 mm (co-cured) + 0.25 mm) | 4 s (Solidification) | 2000 N | 73.4 µm | 20 kHz | 28.6 MPa | [49] |
2018 | Lionetto et al. | CF/Epoxy-CF/Epoxy | Effect of co-curing of film of diff. thickness | PVB Film (0.075 and 0.25 mm) | 4 s (Solidification) | 1500 N | 86.2 µm | 20 kHz | 25 MPa | [117] |
2019 | Tsiangou et al. | CF/PEI-CF/Epoxy | Effect of co-cured film and lose film | Flat PEI Film (0.06 and 0.25 mm) | 4 s (Solidification) | 1500 N | 86.2 µm | 20 kHz | 37.7 MPa | [118] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhudolia, S.K.; Gohel, G.; Leong, K.F.; Islam, A. Advances in Ultrasonic Welding of Thermoplastic Composites: A Review. Materials 2020, 13, 1284. https://doi.org/10.3390/ma13061284
Bhudolia SK, Gohel G, Leong KF, Islam A. Advances in Ultrasonic Welding of Thermoplastic Composites: A Review. Materials. 2020; 13(6):1284. https://doi.org/10.3390/ma13061284
Chicago/Turabian StyleBhudolia, Somen K., Goram Gohel, Kah Fai Leong, and Aminul Islam. 2020. "Advances in Ultrasonic Welding of Thermoplastic Composites: A Review" Materials 13, no. 6: 1284. https://doi.org/10.3390/ma13061284
APA StyleBhudolia, S. K., Gohel, G., Leong, K. F., & Islam, A. (2020). Advances in Ultrasonic Welding of Thermoplastic Composites: A Review. Materials, 13(6), 1284. https://doi.org/10.3390/ma13061284