Peridynamics Model with Surface Correction Near Insulated Cracks for Transient Heat Conduction in Functionally Graded Materials
Abstract
:1. Introduction
2. Bond-Based Peridynamic Thermal Transfer
3. A Peridynamic Transient Heat Conduction Model for FGMs
3.1. Numerical Discretization of FGMs in 2D
3.2. Dirichlet Boundary Condition
3.3. Modeling of Insulated Crack
3.4. Surface Correction
4. Numerical Convergence Studies
4.1. The Peridynamic Model for FGMs
4.2. Convergence Study
4.3. Discretization Schemes for PD Material Points
5. Transient Heat Conduction of the FGM Plate with Cracks
5.1. Transient Heat Conduction of the FGM Plate with Static Crack
5.2. Transient Heat Conduction of the FGM Plate with Dynamic Horizontal Crack
5.3. Transient Heat Conduction of the FGM Plate with Dynamic Intersecting Cracks
6. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Suresh, S.; Mortensen, A. Fundamentals of Functionally Graded Materials; Book/Institute of Materials; IOM Communications Ltd.: London, UK, 1998; ISBN 978-1-86125-063-6. [Google Scholar]
- Li, G.Y.; Guo, S.P.; Zhang, J.M.; Li, Y.; Han, L. Transient heat conduction analysis of functionally graded materials by a multiple reciprocity boundary face method. Eng. Anal. Bound. Elem. 2015, 60, 81–88. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Akhlaghi, M.; Shakeri, M. Transient heat conduction in functionally graded thick hollow cylinders by analytical method. Heat Mass Transf. 2007, 43, 669–675. [Google Scholar] [CrossRef]
- Zhao, J.; Ai, X.; Deng, J.X.; Wang, Z.X. A model of the thermal shock resistance parameter for functionally gradient ceramics. Mater. Sci. Eng. A 2004, 382, 23–29. [Google Scholar] [CrossRef]
- Kayhani, M.H.; Shariati, M.; Nourozi, M.; Karimi Demneh, M. Exact solution of conductive heat transfer in cylindrical composite laminate. Heat Mass Transf. 2009, 46, 83–94. [Google Scholar] [CrossRef]
- Cinefra, M.; Carrera, E.; Brischetto, S.; Belouettar, S. Thermo-mechanical analysis of functionally graded shells. J. Therm. Stress. 2010, 33, 942–963. [Google Scholar] [CrossRef]
- Cinefra, M.; Valvano, S.; Carrera, E. Thermal stress analysis of laminated structures by a variable kinematic MITC9 shell element. J. Therm. Stress. 2016, 39, 121–141. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.L.; Mai, Y.W.; Zhang, X.H. Thermal shock resistance of functionally graded materials. Acta Mater. 2004, 52, 4961–4972. [Google Scholar] [CrossRef]
- Liu, Q.; Ming, P.J. A high-order control volume finite element method for 3-D transient heat conduction analysis of multilayer functionally graded materials. Numer. Heat Transf. Part B Fundam. 2018, 73, 363–385. [Google Scholar] [CrossRef]
- Yu, B.; Zhou, H.L.; Yan, J.; Meng, Z. A differential transformation boundary element method for solving transient heat conduction problems in functionally graded materials. Numer. Heat Transf. Part Appl. 2016, 70, 293–309. [Google Scholar] [CrossRef]
- Zhang, H.H.; Han, S.Y.; Fan, L.F.; Huang, D. The numerical manifold method for 2D transient heat conduction problems in functionally graded materials. Eng. Anal. Bound. Elem. 2018, 88, 145–155. [Google Scholar] [CrossRef]
- Zhou, H.M.; Qin, G.; Wang, Z.Y. Heat conduction analysis for irregular functionally graded material geometries using the meshless weighted least-square method with temperature-dependent material properties. Numer. Heat Transf. Part B Fundam. 2019, 75, 312–324. [Google Scholar] [CrossRef]
- Xi, Q.; Fu, Z.J.; Alves, C.; Ji, H.L. A semi-analytical boundary collocation solver for the inverse Cauchy problems in heat conduction under 3D FGMs with heat source. Numer. Heat Transf. Part B Fundam. 2019, 76, 311–327. [Google Scholar] [CrossRef]
- Krahulec, S.; Sladek, J.; Sladek, V.; Hon, Y.C. Meshless analyses for time-fractional heat diffusion in functionally graded materials. Eng. Anal. Bound. Elem. 2016, 62, 57–64. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Guo, L.C.; Noda, N. Investigation Methods for Thermal Shock Crack Problems of Functionally Graded Materials–Part II: Combined Analytical-Numerical Method. J. Therm. Stress. 2014, 37, 325–339. [Google Scholar] [CrossRef]
- Silling, S.A.; Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 2005, 83, 1526–1535. [Google Scholar] [CrossRef]
- Silling, S.A. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 2000, 35, 175–209. [Google Scholar] [CrossRef] [Green Version]
- Kilic, B.; Agwai, A.; Madenci, E. Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos. Struct. 2009, 90, 141–151. [Google Scholar] [CrossRef]
- Cheng, Z.Q.; Zhang, G.F.; Wang, Y.N.; Bobaru, F. A peridynamic model for dynamic fracture in functionally graded materials. Compos. Struct. 2015, 133, 529–546. [Google Scholar] [CrossRef]
- Amani, J.; Oterkus, E.; Areias, P.; Zi, G.; Nguyen-Thoi, T.; Rabczuk, T. A non-ordinary state-based peridynamics formulation for thermoplastic fracture. Int. J. Impact Eng. 2016, 87, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Lai, X.; Liu, L.S.; Li, S.F.; Zeleke, M.; Liu, Q.-W.; Wang, Z. A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials. Int. J. Impact Eng. 2018, 111, 130–146. [Google Scholar] [CrossRef]
- Cheng, Z.; Jin, D.; Yuan, C.; Li, L. Dynamic fracture analysis of functionally gradient materials with two cracks by peridynamic modeling. Comput. Model. Eng. Sci. 2019, 121, 445–464. [Google Scholar] [CrossRef] [Green Version]
- Bobaru, F.; Duangpanya, M. The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Transf. 2010, 53, 4047–4059. [Google Scholar] [CrossRef]
- Bobaru, F.; Duangpanya, M. A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J. Comput. Phys. 2012, 231, 2764–2785. [Google Scholar] [CrossRef] [Green Version]
- Agwai, A. A Peridynamic Approach for Coupled Fields. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 2011. [Google Scholar]
- Oterkus, S.; Madenci, E.; Agwai, A. Peridynamic thermal diffusion. J. Comput. Phys. 2014, 265, 71–96. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.G.; Bobaru, F. Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion. Comput. Phys. Commun. 2015, 197, 51–60. [Google Scholar] [CrossRef]
- Shojaei, A.; Zaccariotto, M.; Galvanetto, U. Coupling of 2D discretized Peridynamics with a meshless method based on classical elasticity using switching of nodal behaviour. Eng. Comput. 2017, 34, 1334–1366. [Google Scholar] [CrossRef]
- Bazazzadeh, S.; Mossaiby, F.; Shojaei, A. An adaptive thermo-mechanical peridynamic model for fracture analysis in ceramics. Eng. Fract. Mech. 2020, 223, 106708. [Google Scholar] [CrossRef]
- Le, Q.V.; Bobaru, F. Surface corrections for peridynamic models in elasticity and fracture. Comput. Mech. 2018, 61, 499–518. [Google Scholar] [CrossRef]
- Bobaru, F.; Foster, J.T.; Geubelle, P.H.; Silling, S.A. Handbook of Peridynamic Modeling; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 51–57. [Google Scholar]
- Madenci, E.; Oterkus, E. Peridynamic Theory and Its Applications; Springer: New York, NY, USA, 2014; ISBN 978-1-4614-8464-6. [Google Scholar]
- Macek, R.W.; Silling, S.A. Peridynamics via finite element analysis. Finite Elem. Anal. Des. 2007, 43, 1169–1178. [Google Scholar] [CrossRef]
- Mitchell, J.; Silling, S.A.; Littlewood, D. A position-aware linear solid constitutive model for peridynamics. J. Mech. Mater. Struct. 2015, 10, 539–557. [Google Scholar] [CrossRef]
- Bobaru, F.; Yang, M.; Alves, L.F.; Silling, S.A.; Askari, E.; Xu, J.F. Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Methods Eng. 2009, 77, 852–877. [Google Scholar] [CrossRef] [Green Version]
y (m) | t = 0.01 s | t = 0.02 s | ||||
---|---|---|---|---|---|---|
Analytical (°C) | PD (°C) | Relative Difference | Analytical (°C) | PD (°C) | Relative Difference | |
0.0 | 0.0000 | 0.0000 | 0.0000% | 0.0000 | 0.0000 | 0.0000% |
0.1 | 1.3779 | 1.3832 | 0.3857% | 9.9293 | 9.9394 | 0.1015% |
0.2 | 3.4151 | 3.4245 | 0.2764% | 18.8305 | 18.8416 | 0.0589% |
0.3 | 7.0249 | 7.0388 | 0.1974% | 28.0408 | 28.0538 | 0.0464% |
0.4 | 13.0901 | 13.1088 | 0.1427% | 38.1238 | 38.1393 | 0.0406% |
0.5 | 22.3446 | 22.3686 | 0.1077% | 49.0987 | 49.1169 | 0.0370% |
0.6 | 35.0706 | 35.1008 | 0.0861% | 60.6112 | 60.6320 | 0.0344% |
0.7 | 50.7914 | 50.8282 | 0.0724% | 72.0826 | 72.1056 | 0.0319% |
0.8 | 68.1695 | 68.2119 | 0.0622% | 82.8518 | 82.8759 | 0.0291% |
0.9 | 85.2493 | 85.2942 | 0.0527% | 92.3084 | 92.3321 | 0.0258% |
1.0 | 100.0000 | 100.0000 | 0.0000% | 100.0000 | 100.0000 | 0.0000% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.; Liu, Q.; Zhang, L.; Liu, L.; Lai, X. Peridynamics Model with Surface Correction Near Insulated Cracks for Transient Heat Conduction in Functionally Graded Materials. Materials 2020, 13, 1340. https://doi.org/10.3390/ma13061340
Tan Y, Liu Q, Zhang L, Liu L, Lai X. Peridynamics Model with Surface Correction Near Insulated Cracks for Transient Heat Conduction in Functionally Graded Materials. Materials. 2020; 13(6):1340. https://doi.org/10.3390/ma13061340
Chicago/Turabian StyleTan, Yang, Qiwen Liu, Lianmeng Zhang, Lisheng Liu, and Xin Lai. 2020. "Peridynamics Model with Surface Correction Near Insulated Cracks for Transient Heat Conduction in Functionally Graded Materials" Materials 13, no. 6: 1340. https://doi.org/10.3390/ma13061340
APA StyleTan, Y., Liu, Q., Zhang, L., Liu, L., & Lai, X. (2020). Peridynamics Model with Surface Correction Near Insulated Cracks for Transient Heat Conduction in Functionally Graded Materials. Materials, 13(6), 1340. https://doi.org/10.3390/ma13061340