Change of Specimen Temperature during the Monotonic Tensile Test and Correlation between the Yield Strength and Thermoelasto-Plastic Limit Stress on the Example of Aluminum Alloys
Abstract
:1. Background
2. Materials and Methods
- (a)
- D16ATV with a thickness of 1.13 mm,
- (b)
- D16UTV with a thickness of 1.11 mm,
- (c)
- D16CzATV with a thickness of 0.55 mm,
- where the corresponding letters in the D16 alloy designation specify: V (or W)—plate used for airplane plating, A—clad plate with normal clad made of AD1 alloy, U—clad plate with thick clad, T—supersaturated and naturally aged metal plate, Cz—plate of increased purity in terms of chemical composition.
3. Results
3.1. Sheet Plates of 2024-T3 Aluminum Alloy
3.2. Sheet Plates of D16 Aluminum Alloy
4. Discussion
4.1. Sheet Plates of 2024-T3 Aluminum Alloy
4.2. Sheet Plates of D16 Aluminum Alloy
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harwood, N.; Cummings, W.M. (Eds.) Thermoelastic Stress Analysis; IOP Publishing Ltd.: Bristol, UK, 1991; ISBN 978-0-7503-0075-9. [Google Scholar]
- Courtney, T.H. Mechanical Behavior of Materials, 2nd ed.; McGraw-Hill Publishing, Co.: Boston, MA, USA, 2000; ISBN 978-0-07-116171-8. [Google Scholar]
- Weber, W. Über die specifische Warme fester Korper insbesondere der Metalle. Ann. Physik Chemie 1830, 96, 177–213. [Google Scholar] [CrossRef]
- Gough, J. A description of a property of Caoutchouc, or India rubber; with some reflections on the cause of the elasticity of this substance. Mem. Lit. Philos. Soc. Manch. 1805, 1, 288–295. [Google Scholar]
- Thomson, W. On the Dynamical Theory of Heat, with numerical results deduced from Mr Joule’s equivalent of a Thermal Unit, and M. Regnault’s Observations on Steam. T. R. Soc. Edinb. 1853, 20, 261–288. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-T.; Chen, J.-C. Temperature effect induced by uniaxial tensile loading. J. Mater. Sci. 1991, 26, 5685–5692. [Google Scholar] [CrossRef]
- Kobayashi, A.S. (Ed.) Handbook on Experimental Mechanics; Society for Experimental Mechanics (U.S.): New York, NY, USA; Bethel, CT, USA, 1993; ISBN 1560816406. [Google Scholar]
- Inoue, H.; Hirokawa, Y.; Kishimoto, K. Stress Separation in Thermoelastic Stress Analysis Using Nonlinearity of the Thermoelastic Effect. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 2004, 47, 305–311. [Google Scholar] [CrossRef]
- Bottani, C.E.; Caglioti, G. Thermoelastic Instabilities in Metals. Phys. Scr. 1982, T1, 65–70. [Google Scholar] [CrossRef]
- Bottani, C.E.; Caglioti, G. Thermal emission: A probe to identify the critical point of the elastoplastic transition. Mater. Lett. 1982, 1, 119–121. [Google Scholar] [CrossRef]
- Kumar, J.; Baby, S.; Kumar, V. Thermographic studies on IMI-834 titanium alloy during tensile loading. Mater. Sci. Eng. A 2008, 496, 303–307. [Google Scholar] [CrossRef]
- Oliferuk, W.; Maj, M.; Litwinko, R.; Urbański, L. Thermomechanical coupling in the elastic regime and elasto-plastic transition during tension of austenitic steel, titanium and aluminium alloy at strain rates from 10−4 to 10−1 s−1. Eur. J. Mech. A/Solids 2012, 35, 111–118. [Google Scholar] [CrossRef]
- Lipski, A. Impact of the Strain Rate during Tension Test on 46Cr1 Steel Temperature Change. KEM 2014, 598, 133–140. [Google Scholar] [CrossRef]
- Lipski, A.; Boroński, D. Use of Thermography for the Analysis of Strength Properties of Mini-Specimens. MSF 2012, 726, 156–161. [Google Scholar] [CrossRef]
- Berthel, B.; Chrysochoos, A.; Wattrisse, B.; Galtier, A. Infrared Image Processing for the Calorimetric Analysis of Fatigue Phenomena. Exp. Mech. 2008, 48, 79–90. [Google Scholar] [CrossRef]
- Audenino, A.L.; Crupi, V.; Zanetti, E.M. Correlation between thermography and internal damping in metals. Int. J. Fatigue 2003, 25, 343–351. [Google Scholar] [CrossRef]
- De Finis, R.; Palumbo, D.; da Silva, M.M.; Galietti, U. Is the temperature plateau of a self-heating test a robust parameter to investigate the fatigue limit of steels with thermography? Fatigue Fract. Eng. Mater. Struct. 2018, 41, 917–934. [Google Scholar] [CrossRef]
- Rosa, G.L.; Risitano, A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int. J. Fatigue 2000, 22, 65–73. [Google Scholar] [CrossRef]
- Amiri, M.; Khonsari, M.M. Rapid determination of fatigue failure based on temperature evolution: Fully reversed bending load. Int. J. Fatigue 2010, 32, 382–389. [Google Scholar] [CrossRef]
- Cura, F.; Curti, G.; Sesana, R. A new iteration method for the thermographic determination of fatigue limit in steels. Int. J. Fatigue 2005, 27, 453–459. [Google Scholar] [CrossRef]
- Lipski, A. Thermographic Method Based Accelerated Fatigue Limit Calculation for Steel X5CrNi18-10 Subjected to Rotating Bending. Pol. Marit. Res. 2015, 22, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Lipski, A. Rapid Determination of the S–N Curve for Steel by means of the Thermographic Method. Adv. Mater. Sci. Eng. 2016, 2016, 4134021. [Google Scholar] [CrossRef] [Green Version]
- Lipski, A. Accelerated Determination of Fatigue Limit and S-N Curve by Means of Thermographic Method for X5CrNi18-10 Steel. Acta Mech. Autom. 2016, 10, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Doudard, C.; Poncelet, M.; Calloch, S.; Boue, C.; Hild, F.; Galtier, A. Determination of an HCF criterion by thermal measurements under biaxial cyclic loading. Int. J. Fatigue 2007, 29, 748–757. [Google Scholar] [CrossRef] [Green Version]
- Skibicki, D.; Lipski, A.; Pejkowski, Ł. Evaluation of plastic strain work and multiaxial fatigue life in CuZn37 alloy by means of thermography method and energy-based approaches of Ellyin and Garud. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 2541–2556. [Google Scholar] [CrossRef]
- Clienti, C.; Fargione, G.; La Rosa, G.; Risitano, A.; Risitano, G. A first approach to the analysis of fatigue parameters by thermal variations in static tests on plastics. Eng. Fract. Mech. 2010, 77, 2158–2167. [Google Scholar] [CrossRef]
- Risitano, A.; Risitano, G. Determining fatigue limits with thermal analysis of static traction tests. Fatigue Fract. Eng. Mater. Struct. 2013, 36, 631–639. [Google Scholar] [CrossRef]
- Risitano, A.; Giacomo, R.; Clienti, C. Fatigue limit by thermal analysis of specimen surface in mono axial traction test. EPJ Web Conf. 2010, 6, 38010. [Google Scholar] [CrossRef] [Green Version]
- Corigliano, P.; Cucinotta, F.; Guglielmino, E.; Risitano, G.; Santonocito, D. Thermographic analysis during tensile tests and fatigue assessment of S355 steel. Procedia Struct. Integr. 2019, 18, 280–286. [Google Scholar] [CrossRef]
- Corigliano, P.; Cucinotta, F.; Guglielmino, E.; Risitano, G.; Santonocito, D. Fatigue assessment of a marine structural steel and comparison with Thermographic Method and Static Thermographic Method. Fatigue Fract. Eng. Mater. Struct. 2019, 43, 734–743. [Google Scholar] [CrossRef]
- Foti, P.; Santonocito, D.; Ferro, P.; Risitano, G.; Berto, F. Determination of Fatigue Limit by Static Thermographic Method and Classic Thermographic Method on Notched Specimens. Procedia Struct. Integr. 2020, 26, 166–174. [Google Scholar] [CrossRef]
- Risitano, A.; Corallo, D.; Guglielmino, E.; Risitano, G.; Scappaticci, L. Fatigue assessment by energy approach during tensile tests on AISI 304 steel. Frat. Integr. Strut. 2017, 11, 201–215. [Google Scholar] [CrossRef] [Green Version]
- Standard EN ISO 6892-1:2019 Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature; European Committee for Standardization: Brussels, Belgium, 2019.
- Standard ASTM E8/E8M-16a Standard Test Methods for Tension Testing of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2016.
- Standard AMS QQA 250/4 Aluminum Alloy 2024, Plate and Sheet; SAE International: Warrendale, PA, USA, 1997.
- Standard GOST 4784-97 Wrought Aluminium and Aluminium Alloys Grades; State Committee of the Russian Federation for Standardization and Metrology: Moscow, Russia, 1998.
- Sharpe, W.N., Jr. (Ed.) Springer Handbook of Experimental Solid Mechanics, 1st ed; Springer Science & Business Media: New York, NY, USA, 2008; ISBN 978-0-387-26883-5. [Google Scholar]
Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | ||
---|---|---|---|---|---|---|---|---|---|
according to standard [35] | min | - | - | 3.8% | 0.3% | 1.2% | - | - | - |
max | 0.50% | 0.50% | 4.9% | 0.9% | 1.8% | 0.1% | 0.25% | 0.15% | |
thickness 0.16” | 0.07% | 0.16% | 4.7% | 0.65% | 1.5% | 0.00% | 0.10% | 0.03% | |
thickness 0.05” | 0.06% | 0.16% | 4.7% | 0.63% | 1.5% | 0.01% | 0.16% | 0.03% |
Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | ||
---|---|---|---|---|---|---|---|---|---|
according to standard [36] | min | - | - | 3.8% | 0.3% | 1.2% | - | - | - |
max | 0.50% | 0.50% | 4.9% | 0.9% | 1.8% | 0.1% | 0.25% | 0.15% | |
D16ATV | 0.23% | 0.26% | 3.88% | 0.38% | 1.38% | 0.01% | 0.01% | 0.03% | |
D16UTV | 0.25% | 0.26% | 3.93% | 0.43% | 1.41% | 0.01% | 0.01% | 0.03% |
Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | ||
---|---|---|---|---|---|---|---|---|---|
according to standard [36] | min | - | - | 3.8% | 0.3% | 1.2% | - | - | - |
max | 0.20% | 0.30% | 4.9% | 0.9% | 1.8% | 0.1% | 0.25% | 0.15% | |
D16CzATV | 0.11% | 0.22% | 3.91% | 0.34% | 1.33% | 0.03% | 0.01% | 0.02% |
Direction of Cut Out Specimens from a Sheet Plate | Young’s Modulus | Yield Strength | 0.2% Yield Strength | Ultimate Tensile Strength | Elongation |
---|---|---|---|---|---|
GPa | MPa | MPa | MPa | % | |
parallel to the rolling direction | 67.6 ± 3.3 | 362.3 ± 2.0 | - | 488.3 ± 1.0 | 19.4 ± 0.4 |
perpendicular to the rolling direction | 69.7 ± 5.0 | - | 324.2 ± 1.3 | 479.0 ± 2.0 | 20.3 ± 0.9 |
Direction of Cut Out Specimens from a Sheet Plate | Young’s Modulus | Yield Strength | 0.2% Yield Strength | Ultimate Tensile Strength | Elongation |
---|---|---|---|---|---|
GPa | MPa | MPa | MPa | % | |
parallel to the rolling direction | 68.9 ± 2.3 | 334.0 ± 3.4 | - | 468.7 ± 3.5 | 15.9 ± 1.5 |
perpendicular to the rolling direction | 70.2 ± 1.4 | - | 311.5 ± 3.4 | 461.0 ± 5.6 | 15.1 ± 0.9 |
Direction of Cut Out Specimens from a Sheet Plate | Young’s Modulus | Yield Strength | 0.2% Yield Strength | Ultimate Tensile Strength | Elongation |
---|---|---|---|---|---|
GPa | MPa | MPa | MPa | % | |
parallel to the rolling direction | 69.8 ± 3.5 | 339.5 ± 4.8 | - | 463.9 ± 2.7 | 18.5 ± 1.5 |
perpendicular to the rolling direction | 68.1 ± 0.2 | 303.0 ± 14.4 | - | 443.4 ± 12.9 | 15.0 ± 0.8 |
Direction of Cut Out Specimens from a Sheet Plate | Young’s Modulus | Yield Strength | 0.2% Yield Strength | Ultimate Tensile Strength | Elongation |
---|---|---|---|---|---|
GPa | MPa | MPa | MPa | % | |
parallel to the rolling direction | 66.1 ± 1.3 | 332.1 ± 1.4 | - | 447.6 ± 1.1 | 12.5 ± 0.4 |
perpendicular to the rolling direction | 69.3 ± 3.0 | - | 319.0 ± 7.4 | 444.4 ± 5.8 | 13.2 ± 0.7 |
Direction of Cut Out Specimens from a Sheet Plate | Young’s Modulus | Yield Strength | 0.2% Yield Strength | Ultimate Tensile Strength | Elongation |
---|---|---|---|---|---|
GPa | MPa | MPa | MPa | % | |
parallel to the rolling direction | 58.0 ± 1.1 | 288.8 ± 3.6 | - | 404.1 ± 4.9 | 14.4 ± 0.3 |
perpendicular to the rolling direction | 63.4 ± 1.7 | 266.6 ± 4.5 | - | 406.6 ± 9.4 | 17.0 ± 0.9 |
Parameter MPa | Sheet Plate Thickness | |||
---|---|---|---|---|
0.16” | 0.05” | |||
Sheet Plate Specimen Cutting with Regard to the Rolling Direction | ||||
Parallel | Perpendicular | Parallel | Perpendicular | |
Yield strength | 362.3 ± 2.0 | - | 334.0 ± 3.4 | - |
0.2% yield strength | - | 324.2 ± 1.3 | - | 311.5 ± 3.4 |
Thermoelasto-plastic limit stress σθ | 373.6 ± 2.2 | 316.0 ± 5.7 | 339.1 ± 5.2 | 295.2 ± 7.4 |
Thermoelastic Constant MPa−1 | Sheet Plate Thickness | |||
---|---|---|---|---|
0.16” | 0.05” | |||
Sheet Plate Specimen Cutting with Regard to the Rolling Direction | ||||
Parallel | Perpendicular | Parallel | Perpendicular | |
Km | 6.38 × 10−6 | 7.40 × 10−6 | 6.05 × 10−6 | 7.03 × 10−6 |
Parameter MPa | D16ATV | D16CzATV | D16UTV | |||
---|---|---|---|---|---|---|
Sheet Plate Specimen Cutting with Regard to the Rolling Direction | ||||||
Parallel | Perpendicular | Parallel | Perpendicular | Parallel | Perpendicular | |
Yield strength | 339.5 ± 4.8 | 303.0 ± 14.4 | 332.1 ± 1.4 | - | 266.6 ± 4.5 | 288.8 ± 3.6 |
0.2% yield strength | - | - | - | 319.0 ± 7.4 | - | - |
Thermoelasto-plastic limit stress σθ | 338.1 ± 4.2 | 304.0 ± 8.5 | 338.1 ± 2.2 | 312.0 ± 1.7 | 289.1 ± 1.7 | 306.0 ± 2.2 |
Thermoelastic Constant MPa−1 | D16ATV | D16CzATV | D16UTV | |||
---|---|---|---|---|---|---|
Sheet Plate Specimen Cutting with Regard to the Rolling Direction | ||||||
Parallel | Perpendicular | Parallel | Perpendicular | Parallel | Perpendicular | |
Km | 3.79 × 10−6 | 6.92 × 10−6 | 7.66 × 10−6 | 6.57 × 10−6 | 4.41 × 10−6 | 6.26 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipski, A. Change of Specimen Temperature during the Monotonic Tensile Test and Correlation between the Yield Strength and Thermoelasto-Plastic Limit Stress on the Example of Aluminum Alloys. Materials 2021, 14, 13. https://doi.org/10.3390/ma14010013
Lipski A. Change of Specimen Temperature during the Monotonic Tensile Test and Correlation between the Yield Strength and Thermoelasto-Plastic Limit Stress on the Example of Aluminum Alloys. Materials. 2021; 14(1):13. https://doi.org/10.3390/ma14010013
Chicago/Turabian StyleLipski, Adam. 2021. "Change of Specimen Temperature during the Monotonic Tensile Test and Correlation between the Yield Strength and Thermoelasto-Plastic Limit Stress on the Example of Aluminum Alloys" Materials 14, no. 1: 13. https://doi.org/10.3390/ma14010013
APA StyleLipski, A. (2021). Change of Specimen Temperature during the Monotonic Tensile Test and Correlation between the Yield Strength and Thermoelasto-Plastic Limit Stress on the Example of Aluminum Alloys. Materials, 14(1), 13. https://doi.org/10.3390/ma14010013