Microleakage Analysis of Different Bulk-Filling Techniques for Class II Restorations: µ-CT, SEM and EDS Evaluations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
- Bulk&Go group (BG): Each class II cavity was filled using the bulk fill technique (one BFC single increment to the occlusal surface) (Figure 1b);
- Bulk Traditional group (BT): To begin, the proximal wall was restored in order to transform class II into class I, then the residual cavity was filled using one single increment of BFC (Figure 1c).
2.2. Micro-Computed Tomography Analysis
2.3. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagle, M.; D’Antonio, F.; Reierth, E.; Basnet, P.; Trovik, T.A.; Orsini, G.; Manzoli, L.; Acharya, G. Dental caries and preterm birth: A systematic review and meta-analysis. BMJ Open 2018, 8, e018556. [Google Scholar] [CrossRef] [PubMed]
- Schenkel, A.B.; Peltz, I.; Veitz-Keenan, A. Dental cavity liners for Class I and Class II resin-based composite restorations. Cochrane Database Syst. Rev. 2016, 10, CD010526. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.D.; Opdam, N.J.; Hickel, R.; Brunton, P.A.; Gurgan, S.; Kakaboura, A.; Shearer, A.C.; Vanherle, G.; Wilson, N.H.F. Guidance on posterior resin composites: Academy of Operative Dentistry—European Section. J. Dent. 2014, 42, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Opdam, N.; Loomans, B.; Roeters, F.; Bronkhorst, E. Five-year clinical performance of posterior resin composite restorations placed by dental students. J. Dent. 2004, 32, 379–383. [Google Scholar] [CrossRef]
- Opdam, N.; Van De Sande, F.; Bronkhorst, E.; Cenci, M.; Bottenberg, P.; Pallesen, U.; Gaengler, P.; Lindberg, A.; Huysmans, M.; Van Dijken, J. Longevity of posterior composite restorations. J. Dent. Res. 2014, 93, 943–949. [Google Scholar] [CrossRef]
- Taha, N.A.; Palamara, J.E.; Messer, H.H. Cuspal deflection, strain and microleakage of endodontically treated premolar teeth restored with direct resin composites. J. Dent. 2009, 37, 724–730. [Google Scholar] [CrossRef]
- Scotti, N.; Scansetti, M.; Rota, R.; Pera, F.; Pasqualini, D.; Berutti, E. The effect of the post length and cusp coverage on the cycling and static load of endodontically treated maxillary premolars. Clin. Oral Investig. 2011, 15, 923–929. [Google Scholar] [CrossRef]
- El-Damanhoury, H.; Platt, J.A. Polymerization shrinkage stress kinetics and related properties of bulk-fill resin composites. Oper. Dent. 2014, 39, 374–382. [Google Scholar] [CrossRef]
- Han, S.; Park, S. Comparison of internal adaptation in class II bulk-fill composite restorations using micro-CT. Oper. Dent. 2017, 42, 203–214. [Google Scholar] [CrossRef]
- Pecie, R.; Onisor, I.; Krejci, I.; Bortolotto, T. Marginal adaptation of direct class II composite restorations with different cavity liners. Oper. Dent. 2013, 38, E210–E220. [Google Scholar] [CrossRef] [Green Version]
- Poggio, C.; Chiesa, M.; Scribante, A.; Mekler, J.; Colombo, M. Microleakage in class II composite restorations with margins below the CEJ: In vitro evaluation of different restorative techniques. Medicina Oral, Patología Oral y Cirugía Bucal 2013, 18, e793–e798. [Google Scholar] [CrossRef] [PubMed]
- Loguercio, A.D.; Rezende, M.; Gutiérrez, M.F.; Costa, T.; Armas-Vega, A.; Reis, A. Randomized 36-month follow-up of posterior bulk-filled resin composite restorations. J. Dent. 2019, 85, 93–102. [Google Scholar] [CrossRef] [PubMed]
- El-Safty, S.; Silikas, N.; Watts, D.C. Creep deformation of restorative resin-composites intended for bulk-fill placement. Dent. Mater. 2012, 28, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Leprince, J.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Monterubbianesi, R.; Orsini, G.; Tosi, G.; Conti, C.; Librando, V.; Procaccini, M.; Putignano, A. Spectroscopic and mechanical properties of a new generation of bulk fill composites. Front. Physiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monterubbianesi, R.; Tosco, V.; Sabbatini, S.; Orilisi, G.; Conti, C.; Özcan, M.; Orsini, G.; Putignano, A. How can different polishing timing influence methacrylate and di-methacrylate bulk fill composites? Evaluation of chemical and physical properties. BioMed Res. Int. 2020. Available online: https://www.hindawi.com/journals/bmri/2020/1965818/ (accessed on 8 April 2020). [CrossRef] [PubMed]
- Hayashi, J.; Espigares, J.; Takagaki, T.; Shimada, Y.; Tagami, J.; Numata, T.; Chan, D.; Sadr, A. Real-time in-depth imaging of gap formation in bulk-fill resin composites. Dent. Mater. 2019, 35, 585–596. [Google Scholar] [CrossRef]
- Kakaboura, A.; Rahiotis, C.; Watts, D.C.; Silikas, N.; Eliades, G. 3D-marginal adaptation versus setting shrinkage in light-cured microhybrid resin composites. Dent. Mater. 2007, 23, 272–278. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Gu, L.; Li, Y. Detection of marginal leakage of class v restorations in vitro by micro–computed tomography. Oper. Dent. 2014, 39, 174–180. [Google Scholar] [CrossRef]
- Marí, L.G.; Gil, A.C.; Puy, C.L. In vitro evaluation of microleakage in class II composite restorations: High-viscosity bulk-fill vs conventional composites. Dent. Mater. J. 2019, 38, 721–727. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Park, S. Measurement of the internal adaptation of resin composites using micro-CT and its correlation with polymerization shrinkage. Oper. Dent. 2014, 39, e57–e70. [Google Scholar] [CrossRef] [PubMed]
- Scotti, N.; Tempesta, R.M.; Pasqualini, D.; Baldi, A.; Vergano, E.A.; Baldissara, P.; Alovisi, M.; Comba, A. 3D interfacial gap and fracture resistance of endodontically treated premolars restored with fiber-reinforced composites. J. Adhes. Dent. 2020, 22, 215–224. [Google Scholar] [PubMed]
- Sampaio, C.S.; Garcés, G.A.; Kolakarnprasert, N.; Atria, P.J.; Giannini, M.; Hirata, R. External marginal gap evaluation of different resin-filling techniques for class II Restorations—A micro-CT and SEM Analysis. Oper. Dent. 2020, 45, E167–E175. [Google Scholar] [CrossRef] [PubMed]
- Hirata, R.; Clozza, E.; Giannini, M.; Farrokhmanesh, E.; Janal, M.; Tovar, N.; Bonfante, E.A.; Coelho, P.G. Shrinkage assessment of low shrinkage composites using micro-computed tomography. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 103, 798–806. [Google Scholar] [CrossRef]
- Ersen, K.A.; Gürbüz, Ö.; Özcan, M. Evaluation of polymerization shrinkage of bulk-fill resin composites using microcomputed tomography. Clin. Oral Investig. 2019, 24, 1687–1693. [Google Scholar] [CrossRef]
- Chiodera, G.; Orsini, G.; Tosco, V.; Monterubbianesi, R.; Manauta, J.; Devoto, W.; Putignano, A. Essential Lines: A simplified filling and modelling technique for direct posterior composite restorations. Int. J. Esthet. Dent. 2021, accepted. [Google Scholar]
- Duquia, R.D.C.S.; Osinaga, P.W.R.; Demarco, F.F.; Habekost, L.D.V.; Conceição, E.N. Cervical microleakage in MOD restorations: In vitro comparison of indirect and direct composite. Oper. Dent. 2006, 31, 682–687. [Google Scholar] [CrossRef]
- Kwon, Y.; Ferracane, J.; Lee, I.-B. Effect of layering methods, composite type, and flowable liner on the polymerization shrinkage stress of light cured composites. Dent. Mater. 2012, 28, 801–809. [Google Scholar] [CrossRef]
- Nedeljkovic, I.; Teughels, W.; De Munck, J.; Van Meerbeek, B.; Van Landuyt, K. Is secondary caries with composites a material-based problem? Dent. Mater. 2015, 31, e247–e277. [Google Scholar] [CrossRef]
- Yip, K.H.-K.; Poon, B.K.; Chu, F.C.; Poon, E.C.; Kong, F.Y.; Smales, R.J. Clinical evaluation of packable and conventional hybrid resin-based composites for posterior restorations in permanent teeth. J. Am. Dent. Assoc. 2003, 134, 1581–1589. [Google Scholar] [CrossRef]
- Sun, J.; Eidelman, N.; Lin-Gibson, S. 3D mapping of polymerization shrinkage using X-ray micro-computed tomography to predict microleakage. Dent. Mater. 2009, 25, 314–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rominu, M.; Manescu, A.; Sinescu, C.; Negruțiu, M.L.; Topală, F.; Rominu, R.O.; Bradu, A.; Jackson, D.A.; Giuliani, A.; Podoleanu, A. Zirconia enriched dental adhesive: A solution for OCT contrast enhancement. Demonstrative study by synchrotron radiation microtomography. Dent. Mater. 2014, 30, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Gordan, V.V.; Shen, C.; Riley, J.; Mjor, I.A. Two-year clinical evaluation of repair versus replacement of composite restorations. J. Esthet. Restor. Dent. 2006, 18, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Kuper, N.; Opdam, N.; Ruben, J.; De Soet, J.; Cenci, M.; Bronkhorst, E.; Huysmans, M.C. Gap size and wall lesion development next to composite. J. Dent. Res. 2014, 93, 108S–113S. [Google Scholar] [CrossRef] [Green Version]
- Algamaiah, H.; Sampaio, C.S.; Rigo, L.C.; Janal, M.N.; Giannini, M.; Bonfante, E.A.; Coelho, P.G.; Reis, A.F.; Hirata, R. Microcomputed tomography evaluation of volumetric shrinkage of bulk-fill composites in class II cavities. J. Esthet. Restor. Dent. 2016, 29, 118–127. [Google Scholar] [CrossRef]
- Díaz, C.A.P.; Shimokawa, C.; Sampaio, C.S.; Freitas, A.Z.; Turbino, M.L. Characterization and comparative analysis of voids in class II composite resin restorations by optical coherence tomography. Oper. Dent. 2020, 45, 71–79. [Google Scholar] [CrossRef]
- Hirata, R.; Pacheco, R.R.; Caceres, E.; Janal, M.N.; Romero, M.F.; Giannini, M.; Coelho, P.G.; Rueggeberg, F.A. Effect of sonic resin composite delivery on void formation assessed by micro-computed tomography. Oper. Dent. 2018, 43, 144–150. [Google Scholar] [CrossRef]
- Sampaio, C.S.; Chiu, K.-J.; Farrokhmanesh, E.; Janal, M.; Puppin-Rontani, R.M.; Giannini, M.; Bonfante, E.A.; Coelho, P.G.; Hirata, R. Microcomputed tomography evaluation of polymerization shrinkage of class I flowable resin composite restorations. Oper. Dent. 2017, 42, E16–E23. [Google Scholar] [CrossRef]
- Peutzfeldt, A.; Mühlebach, S.; Lussi, A.; Flury, S. Marginal gap formation in approximal “Bulk fill” resin composite restorations after artificial ageing. Oper. Dent. 2018, 43, 180–189. [Google Scholar] [CrossRef]
- Arbildo-Vega, H.I.; Lapinska, B.; Panda, S.; Lamas-Lara, C.; Khan, A.S.; Lukomska-Szymanska, M. Clinical effectiveness of bulk-fill and conventional resin composite restorations: Systematic review and meta-analysis. Polymers 2020, 12, 1786. [Google Scholar] [CrossRef]
- Papadogiannis, D.; Kakaboura, A.; Palaghias, G.; Eliades, G. Setting characteristics and cavity adaptation of low-shrinking resin composites. Dent. Mater. 2009, 25, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.-C.; Rösch, P.; Dabanoglu, A.; Lin, C.-P.; Hickel, R.; Kunzelmann, K.-H. Polymerization composite shrinkage evaluation with 3D deformation analysis from μCT images. Dent. Mater. 2010, 26, 223–231. [Google Scholar] [CrossRef]
- Sadr, A.; Shimada, Y.; Mayoral, J.R.; Hariri, I.; Bakhsh, T.A.; Sumi, Y.; Tagami, J. Swept source optical coherence tomography for quantitative and qualitative assessment of dental composite restorations. Proc. SPIE 2011, 7884. [Google Scholar] [CrossRef]
- Takamizawa, T.; Imai, A.; Hirokane, E.; Tsujimoto, A.; Barkmeier, W.W.; Erickson, R.L.; Latta, M.A.; Miyazaki, M. SEM observation of novel characteristic of the dentin bond interfaces of universal adhesives. Dent. Mater. 2019, 35, 1791–1804. [Google Scholar] [CrossRef] [PubMed]
- Uno, S.; Tanaka, T.; Inoue, S.; Sano, H. The Influence of configuration factors on cavity adaptation in compomer restorations. Dent. Mater. J. 1999, 18, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Villarroel, M.; Fahl, N.; De Sousa, A.M.; De Oliveira, O.B. Direct esthetic restorations based on translucency and opacity of composite resins. J. Esthet. Restor. Dent. 2011, 23, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Resin composite—State of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef]
- Moszner, N.; Fischer, U.K.; Ganster, B.; Liska, R.; Rheinberger, V. Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent. Mater. 2008, 24, 901–907. [Google Scholar] [CrossRef]
- Son, S.-A.; Park, J.-K.; Seo, D.-G.; Ko, C.-C.; Kwon, Y.H. How light attenuation and filler content affect the microhardness and polymerization shrinkage and translucency of bulk-fill composites? Clin. Oral Investig. 2016, 21, 559–565. [Google Scholar] [CrossRef]
Material | Manufacturer | Composition |
---|---|---|
Filtek One Bulk Fill Restorative | 3M ESPE, St. Paul, MN, USA | Fillers: Non-agglomerated nanosilica of 20 nm filler size and agglomerated zirconia/silica nanocluster with a size of 5–20 nm. The filler loading was 76.5 wt.% (58.5% by volume). Organic matrix: Bisphenol-A glycidyl dimethacrylate (Bis-GMA) (1–10 wt.%), urethane dimethacrylate (UDMA) (10–20 wt%), triethylene glycol dimethacrylate (TEGDMA) (<1 wt.%), bisphenol A polyethylene glycol diether dimethacrylate (Bis-EMA)-6 (1–10 wt.%), in addition to addition–fragmentation monomer (AFM), aromatic urethane dimethacrylate (AUDMA), and 1,12-dodecane dimethacrylate (DDDMA). |
Group | Nr of Defect | DV (×109, µm3) | DS/DV (µm−1) | Mean Thickness (µm) | MV (×109, µm3) | DV/MV (%) |
---|---|---|---|---|---|---|
BG | 21.0 ± 1.0 | 0.19 ± 0.18 | 0.085 ± 0.016 | 24.250 ± 4.969 | 714 ± 72.7 | 0.028 ± 0.034 |
BT | 21.5 ± 11.4 | 2.08 ± 1.09 | 0.025 ± 0.015 | 112.032 ± 54.202 | 829 ± 131 | 0.268 ± 0.163 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosco, V.; Vitiello, F.; Furlani, M.; Gatto, M.L.; Monterubbianesi, R.; Giuliani, A.; Orsini, G.; Putignano, A. Microleakage Analysis of Different Bulk-Filling Techniques for Class II Restorations: µ-CT, SEM and EDS Evaluations. Materials 2021, 14, 31. https://doi.org/10.3390/ma14010031
Tosco V, Vitiello F, Furlani M, Gatto ML, Monterubbianesi R, Giuliani A, Orsini G, Putignano A. Microleakage Analysis of Different Bulk-Filling Techniques for Class II Restorations: µ-CT, SEM and EDS Evaluations. Materials. 2021; 14(1):31. https://doi.org/10.3390/ma14010031
Chicago/Turabian StyleTosco, Vincenzo, Flavia Vitiello, Michele Furlani, Maria Laura Gatto, Riccardo Monterubbianesi, Alessandra Giuliani, Giovanna Orsini, and Angelo Putignano. 2021. "Microleakage Analysis of Different Bulk-Filling Techniques for Class II Restorations: µ-CT, SEM and EDS Evaluations" Materials 14, no. 1: 31. https://doi.org/10.3390/ma14010031
APA StyleTosco, V., Vitiello, F., Furlani, M., Gatto, M. L., Monterubbianesi, R., Giuliani, A., Orsini, G., & Putignano, A. (2021). Microleakage Analysis of Different Bulk-Filling Techniques for Class II Restorations: µ-CT, SEM and EDS Evaluations. Materials, 14(1), 31. https://doi.org/10.3390/ma14010031