An Experimental Study of Possible Post-War Ferronickel Slag Waste Disposal in Szklary (Lower Silesian, Poland) as Partial Aggregate Substitute in Concrete: Characterization of Physical, Mechanical, and Thermal Properties
Abstract
:1. Introduction
2. Materials
2.1. Specimen Preparation
2.2. Ferronickel Slag Waste
2.3. Mix Composition
2.4. Mix Production
3. Methodology
3.1. Fresh Concrete Tests
3.2. Hardened Concrete Tests
4. Results and Discussion
4.1. The Slump Cone Test
4.2. Air Content
4.3. The pH Test
4.4. Density
4.5. Compressive Strength
4.6. Split Tensile Strength
4.7. Flexural Strength
4.8. Modulus of Elasticity and Poisson’s Coefficient
4.9. Thermal Conductivity
5. Conclusions
- The highest air content was reported for 25FNSW samples (3.6%);
- The density of hardened concretes were proportional to the amount of FNSWA used. The density increased with the increasing FNSWA and the highest density (2378 kg/m3) was found for concrete with 25% FNSWA and the lowest density (2187 kg/m3) for plain concrete;
- The substitution of 80, 160, 240, 320, and 400 kg/m3 natural granite aggregate with FNSWA caused an increase in the compressive strength by about 1.09, 1.18, 1.20, 1.24, and 1.31 times and in flexural strength by about 1.05, 1.10, 1.25, 1.61, and 1.66 times, respectively compared to plain concrete, while the obtained split tensile strength was increased compared to BM by 4.0%, 25%, 38%, 40%, and 43%, respectively
- A slight influence of FNSWA on the modulus of elasticity was noted as reported values showed an increase in the range of 0.3% up to 6.7%, depending on the amount of substitute used;
- All of the concretes with FNSWA showed lower thermal conductivity values compare to BM. The highest decrease was reported for 25FNSW samples (18.6%);
- The substitution of natural aggregate done with FNSWA did not affect consistency, the pH value, and Poisson’s ratio of concrete.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Technical Review, Supreme Technical Organization (Poland), Central Institute of Scientific, Technical and Economic Information (Poland), Warsaw, Poland, Central Office of Measures: Warsaw, Poland, 1984.
- The Act of July 21, 1950 on the 6-Year Plan for Economic Development and Building the Foundations of Socialism for the Years. J. Laws 1950, 37, 344.
- Tighe, C. Forward to battle for the Six-Year Plan! Polish writers 1945–56. J. Eur. Stud. 2015, 45, 189–219. [Google Scholar] [CrossRef]
- Pohoski, M. Interrelation between Social Mobility of Individuals and Groups in the Process of Economic Growth in Poland. Pol. Sociol. Bull. 1964, 10, 17–33. [Google Scholar]
- Malina, G. Ecotoxicological and environmental problems associated with the former chemical plant in Tarnowskie Gory, Poland. Toxicology 2004, 205, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Berto, C.; Krajcarz, M.T.; Moskal-del Hoyo, M.; Komar, M.; Sinet-Mathiot, V.; Zarzecka-Szubińska, K.; Krajcarz, M.; Szymanek, M.; Wertz, K.; Marciszak, A.; et al. Environment changes during Middle to Upper Palaeolithic transition in southern Poland (Central Europe). A multiproxy approach for the MIS 3 sequence of Koziarnia Cave (Kraków-Częstochowa Upland). J. Archaeol. Sci. Rep. 2021, 35, 102723. [Google Scholar] [CrossRef]
- dám Nádudvari, Á.; Fabiańska, M.J. Use of geochemical analysis and vitrinite reflectance to assess different self-heating processes in coal-waste dumps (Upper Silesia, Poland). Fuel 2016, 181, 102–119. [Google Scholar] [CrossRef]
- Carras, J.N.; Day, S.J.; Saghafi, A.; Williams, D.J. Greenhouse gas emissions from low-temperature oxidation and spontaneous combustion at open-cut coal mines in Australia. Int. J. Coal. Geol. 2009, 78, 161–168. [Google Scholar] [CrossRef]
- Central Statistical Office (GUS)—TERYT (National Register of Territorial Land Apportionment Journal). Available online: https://eteryt.stat.gov.pl/eTeryt/rejestr_teryt/udostepnianie_danych/baza_teryt/uzytkownicy_indywidualni/wyszukiwanie/wyszukiwanie.aspx?contrast=default (accessed on 17 March 2021).
- Institute of Mineral and Energy Economy of the Polish Academy of Sciences. Part I: Searching and recognition of defenses planning and organization of geological works. In Methodology for Documenting the Fold Solid Mines; Institute of Mineral and Energy Economy of the Polish Academy of Sciences: Cracow, Poland, 2012. [Google Scholar]
- Polish Geological Institute-National Research Institute. Balance of Prospective Resources of Poland’s Minerals at December 31, 2018; Polish Geological Institute-National Research Institute: Warsaw, Poland, 2020. [Google Scholar]
- Małek, M.; Łasica, W.; Jackowski, M.; Kadela, M. Effect of Waste Glass Addition as a Replacement for Fine Aggregate on Properties of Mortar. Materials 2020, 13, 3189. [Google Scholar] [CrossRef]
- Szcześniak, A.; Zychowicz, J.; Stolarski, A. Influence of Fly Ash Additive on the Properties of Concrete with Slag Cement. Materials 2020, 13, 3265. [Google Scholar] [CrossRef]
- Isa, M.; Pilakoutas, K.; Guadagnini, M.; Angelakopoulos, H. Mechanical performance of affordable and eco-efficient ultra-high performance concrete (UHPC) containing recycled tyre steel fibres. Constr. Build. Mater. 2020, 255, 119272. [Google Scholar] [CrossRef]
- Jurczak, R.; Szmatuła, F.; Rudnicki, T.; Korentz, J. Effect of Ground Waste Glass Addition on the Strength and Durability of Low Strength Concrete Mixes. Materials 2021, 14, 190. [Google Scholar] [CrossRef]
- Khankhaje, E.; Salim, M.R.; Mirza, J.; Hussin, M.W.; Rafieizonooz, M. Properties of sustainable lightweight pervious concrete containing oil palm kernel shell as coarse aggregate. Constr. Build. Mater. 2016, 126, 1054–1065. [Google Scholar] [CrossRef]
- Bhat, J.A. Mechanical behaviour of self compacting concrete: Effect of wood ash and coal ash as partial cement replacement. Mater. Today Proc. 2021, 42, 1470–1476. [Google Scholar] [CrossRef]
- Małek, M.; Jackowski, M.; Łasica, W.; Kadela, M. Characteristics of Recycled Polypropylene Fibers as an Addition to Concrete Fabrication Based on Portland Cement. Materials 2020, 13, 1827. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.B.; Yi, N.H.; Kim, H.Y.; Kim, J.H.J.; Song, Y.C. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement. Concr. Comp. 2010, 32, 232–240. [Google Scholar] [CrossRef]
- Małek, M.; Jackowski, M.; Łasica, W.; Kadela, M.; Wachowski, M. Mechanical and Materials Properties of Mortar Reinforced with Glass Fiber: An Experimental Study. Materials 2021, 14, 698. [Google Scholar] [CrossRef]
- Małek, M.; Łasica, W.; Kadela, M.; Kluczyński, J.; Dudek, D. Physical and Mechanical Properties of Polypropylene Fibre-Reinforced Cement–Glass Composite. Materials 2021, 14, 637. [Google Scholar] [CrossRef]
- Jackowski, M.; Małek, M.; Życiński, W.; Łasica, W.; Owczarek, M. Characterization of new recycled polymers shots addition for the mechanical strength of concrete. Mater. Technol. 2020, 54, 355–358. [Google Scholar] [CrossRef]
- Kōmura, S.; Takeda, T.; Ōhara, S. Magnetic Diffuse Scattering of Neutrons from Fe-Ni Invar Alloy. J. Phys. Soc. Jpn. 1973, 35, 706–711. [Google Scholar] [CrossRef]
- Saha, A.K.; Sarker, P.K. Sustainable use of ferronickel slag fine aggregate and fly ash in structural concrete: Mechanical properties and leaching study. J. Clean. Prod. 2017, 162, 438–448. [Google Scholar] [CrossRef]
- Saha, A.K.; Khan, M.N.N.; Sarker, P.K. Value added utilization of by-product electric furnace ferronickel slag as construction materials: A review. Resour. Conserv. Recycl. 2018, 134, 10–24. [Google Scholar] [CrossRef] [Green Version]
- Saha, A.K.; Sarker, P.K. Compressive strength of mortar containing ferronickel slag as replacement of natural sand. Proc. Eng. 2017, 171, 689–694. [Google Scholar] [CrossRef]
- Saha, A.K.; Sarker, P.K. Durability of mortar incorporating ferronickel slag aggregate and supplementary cementitious materials subjected to wet-dry cycles. Inter. J. Concr. Struct. Mater. 2018, 12, 29. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Castel, A.; Kim, T.; Khan, M.S.H. Performance of fly ash concrete with ferronickel slag fine aggregate against alkali-silica reaction and chloride diffusion. Cem. Concr. Res. 2021, 139, 106265. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Casimiro, J.O.C.; Sarker, P.K. Fresh and hardened properties of high strength self-compacting concrete using by-product ferronickel slag fine aggregate. J. Build. Eng. 2020, 32, 101686. [Google Scholar] [CrossRef]
- Sun, J.; Feng, J.; Chen, Z. Effect of ferronickel slag as fine aggregate on properties of concrete. Constr. Build. Mater. 2019, 206, 201–209. [Google Scholar] [CrossRef]
- Qi, A.; Liu, X.; Wang, Z.; Chen, Z. Mechanical properties of the concrete containing ferronickel slag and blast furnace slag powder. Constr. Build. Mater. 2020, 231, 117120. [Google Scholar] [CrossRef]
- Saha, A.K.; Sarker, P.K.; Golovanevskiy, V. Thermal properties and residual strength after high temperature exposure of cement mortar using ferronickel slag aggregate. Constr. Build. Mater. 2019, 199, 601–612. [Google Scholar] [CrossRef]
- European Committee for Standardization. EN 197-1:2012 Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements; European Committee for Standardization: Brussels, Belgium, 2012. [Google Scholar]
- European Committee for Standardization. EN 196-6:2019-01 Methods of Testing Cement—Part 6: Determination of Fineness; European Committee for Standardization: Brussels, Belgium, 2019. [Google Scholar]
- European Committee for Standardization. EN 196-1:2016-07 Methods of Testing Cement—Part 1: Determination of Strength; European Committee for Standardization: Brussels, Belgium, 2016. [Google Scholar]
- Rudnicki, T. The method of aggregate skeleton in self compacting concrete designing with segment regression. Cem. Wapno Beton. 2016, 1, 10–19. [Google Scholar] [CrossRef]
- European Committee for Standardization. EN 12620+A1:2010 Aggregates for Concrete; European Committee for Standardization: Brussels, Belgium, 2010. [Google Scholar]
- Górażdże Group: Cement, Concrete, Aggregate. Technical Data Sheet CEM I 42.5 R. Available online: http://www.gorazdze.pl (accessed on 14 December 2020).
- Rudnicki, T. Functional Method of Designing Self-Compacting Concrete. Materials 2021, 14, 267. [Google Scholar] [CrossRef]
- European Committee for Standardization. EN 12390-2:2019-07 Testing Hardened Concrete—Part 2: Making and Curing Specimens for Strength Tests; European Committee for Standardization: Brussels, Belgium, 2019. [Google Scholar]
- European Committee for Standardization. EN 12350-2:2019-07 Testing Fresh Concrete—Part 2: Slump Test; European Committee for Standardization: Brussels, Belgium, 2019. [Google Scholar]
- European Committee for Standardization. EN 12350-7:2019-08 Testing Fresh Concrete—Part 7: Air Content—Pressure Method; European Committee for Standardization: Brussels, Belgium, 2019. [Google Scholar]
- Polish Committee for Standardization. PN-B-01810:1986 Protection Against Corrosion in Building—Protective Properties of Concrete Referring to Reinforcing Steel—Electrochemical Tests; Polish Committee for Standardization: Brussels, Belgium, 1986. [Google Scholar]
- European Committee for Standardization. EN 12390-7:2019-08 Testing Hardened Concrete—Part 7: Density of Hardened Concrete; European Committee for Standardization: Brussels, Belgium, 2008. [Google Scholar]
- European Committee for Standardization. N 12390-3:2019-07 Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens; European Committee for Standardization: Brussels, Belgium, 2019. [Google Scholar]
- European Committee for Standardization. EN 12390-5:2019-08 Testing Hardened Concrete—Part 5: Flexural Strength of Test Specimens; European Committee for Stand-ardization: Brussels, Belgium, 2019. [Google Scholar]
- European Committee for Standardization. EN 12390-6:2011 Testing Hardened Concrete—Part 6: Tensile Splitting Strength of Test Specimens; European Committee for Standardization: Brussels, Belgium, 2011. [Google Scholar]
- European Committee for Standardization. EN 12390-13:2014-02 Testing Hardened Concrete—Part 13: Determination of Secant Modulus of Elasticity in Compression; European Committee for Standardization: Brussels, Belgium, 2014. [Google Scholar]
- Bouasria, M.; Khadraoui, F.; Benzaama, M.-H.; Touati, K.; Chateigner, D.; Gascoin, S.; Pralong, V.; Orberger, B.; Babouri, L.; El Mendili, Y. Partial substitution of cement by the association of Ferronickel slags and Crepidula fornicata shells. J. Build. Eng. 2021, 33, 101587. [Google Scholar] [CrossRef]
- Sakoi, Y.; Aba, M.; Tsukinaga, Y.; Nagataki, S. Properties of concrete used in ferronickel slag aggregate. In Proceedings of the 3rd International Conference on Sustainable Construction Materials and Technologies, Tokyo, Japan, 19–21 August 2013; pp. 1–6. [Google Scholar]
Compositions | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | K2O | Cl |
---|---|---|---|---|---|---|---|---|---|
Unit (vol%) | 19.5 | 4.9 | 2.9 | 63.3 | 1.3 | 2.8 | 0.1 | 0.9 | 0.05 |
Specific surface area (m2/kg) | 376.3 | ||||||||
Initial setting time (min) | 227 | ||||||||
Compressive strength after 2 days (MPa) | 28.4 | ||||||||
Compressive strength after 28 days (MPa) | 60.8 |
Compositions | O | Na | Si | K |
---|---|---|---|---|
Unit (vol%) | 77.7 | 14.9 | 4.8 | 2.6 |
Compositions | SiO2 | Fe2O3 | Al2O3 | CaO | MgO |
---|---|---|---|---|---|
Unit (vol%) | 49.8 | 24.4 | 11.9 | 9.6 | 4.3 |
Mix Symbol | Cement [kg] | Water [kg] | Chemical Admixture [kg] | Granite Aggregate [kg] | FNSWA [kg] |
---|---|---|---|---|---|
BM | 468 | 207 | 4.7 | 1600 | 0 |
5FNSW | 1520 | 80 | |||
10FNSW | 1440 | 160 | |||
15FNSW | 1360 | 240 | |||
20FNSW | 1280 | 320 | |||
25FNSW | 1200 | 400 |
Mix Symbol | Slump Cone [mm] | Consistency Class [41] | Air Content [%] | pH [-] |
---|---|---|---|---|
BM | 2 ± 1 | S1 | 2.1 ± 0.1 | 12.61 ± 0.03 |
5FNSW | 2 ± 1 | S1 | 2.2 ± 0.1 | 12.65 ± 0.03 |
10FNSW | 2 ± 1 | S1 | 2.4 ± 0.1 | 12.68 ± 0.04 |
15FNSW | 2 ± 1 | S1 | 2.7 ± 0.1 | 12.69 ± 0.03 |
20FNSW | 2 ± 1 | S1 | 3.2 ± 0.1 | 12.71 ± 0.03 |
25FNSW | 1 ± 1 | S1 | 3.6 ± 0.1 | 12.72 ± 0.04 |
Mix Symbol | Density [kg/m3] | Compressive Strength [MPa] | Split Tensile Strength [MPa] | Flexural Strength [MPa] | Modulus of Elasticity [GPa] | Poisson Coefficient [GPa] | Thermal Conductivity [W/mK] |
---|---|---|---|---|---|---|---|
BM | 2187 ± 2 | 45 ± 1 | 2.87 ± 0.03 | 5.9 ± 0.1 | 31.5 ± 0.4 | 0.123 ± 0.03 | 1.88 ± 0.04 |
5FNSW | 2222 ± 2 | 49 ± 1 | 2.99 ± 0.05 | 6.2 ± 0.1 | 31.6 ± 0.3 | 0.124 ± 0.03 | 1.68 ± 0.04 |
10FNSW | 2244 ± 3 | 53 ± 1 | 3.60 ± 0.03 | 6.5 ± 0.1 | 31.8 ± 0.3 | 0.129 ± 0.04 | 1.58 ± 0.04 |
15FNSW | 2258 ± 2 | 54 ± 1 | 3.95 ± 0.03 | 7.4 ± 0.1 | 32.1 ± 0.4 | 0.123 ± 0.03 | 1.56 ± 0.03 |
20FNSW | 2332 ± 2 | 56 ± 1 | 4.02 ± 0.03 | 9.5 ± 0.2 | 32.4 ± 0.3 | 0.124 ± 0.04 | 1.54 ± 0.04 |
25FNSW | 2378 ± 3 | 59 ± 1 | 4.11 ± 0.04 | 9.8 ± 0.1 | 33.6 ± 0.3 | 0.123 ± 0.03 | 1.53 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małek, M.; Jackowski, M.; Łasica, W.; Dydek, K.; Boczkowska, A. An Experimental Study of Possible Post-War Ferronickel Slag Waste Disposal in Szklary (Lower Silesian, Poland) as Partial Aggregate Substitute in Concrete: Characterization of Physical, Mechanical, and Thermal Properties. Materials 2021, 14, 2552. https://doi.org/10.3390/ma14102552
Małek M, Jackowski M, Łasica W, Dydek K, Boczkowska A. An Experimental Study of Possible Post-War Ferronickel Slag Waste Disposal in Szklary (Lower Silesian, Poland) as Partial Aggregate Substitute in Concrete: Characterization of Physical, Mechanical, and Thermal Properties. Materials. 2021; 14(10):2552. https://doi.org/10.3390/ma14102552
Chicago/Turabian StyleMałek, Marcin, Mateusz Jackowski, Waldemar Łasica, Kamil Dydek, and Anna Boczkowska. 2021. "An Experimental Study of Possible Post-War Ferronickel Slag Waste Disposal in Szklary (Lower Silesian, Poland) as Partial Aggregate Substitute in Concrete: Characterization of Physical, Mechanical, and Thermal Properties" Materials 14, no. 10: 2552. https://doi.org/10.3390/ma14102552
APA StyleMałek, M., Jackowski, M., Łasica, W., Dydek, K., & Boczkowska, A. (2021). An Experimental Study of Possible Post-War Ferronickel Slag Waste Disposal in Szklary (Lower Silesian, Poland) as Partial Aggregate Substitute in Concrete: Characterization of Physical, Mechanical, and Thermal Properties. Materials, 14(10), 2552. https://doi.org/10.3390/ma14102552