Molecular Dynamics Study of the Nanoindentation Behavior of Cu64Zr36/Cu Amorphous/Crystalline Nanolaminate Composites
Abstract
:1. Introduction
2. Simulation Procedure and Stress Calculation
3. Simulation Results and Discussion
3.1. Force–Displacement Curves
3.2. Analysis of Strain/Stress Localization and Distribution
3.3. Dislocation Analysis
3.4. Analysis of STZs and Dislocations during Loading and Unloading
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schuh, C.A.; Hufnagel, T.C.; Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 2007, 55, 4067–4109. [Google Scholar] [CrossRef]
- Eckert, J.; Das, J.; Pauly, S.; Duhamel, C. Mechanical properties of bulk metallic glasses and composites. J. Mater. Res. 2007, 22, 285–301. [Google Scholar] [CrossRef]
- Trexler, M.M.; Thadhani, N.N. Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 2010, 55, 759–839. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Hamza, A.V.; Barbee, T.W. Ductile crystalline-amorphous nanolaminates. Proc. Natl. Acad. Sci. USA 2007, 104, 11155–11160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jian, W.R.; Wang, L.; Li, B.; Yao, X.H.; Luo, S.N. Improved ductility of Cu64Zr36 metallic glass/Cu nanocomposites via phase and grain boundaries. Nanotechnology 2016, 27, 175701. [Google Scholar] [CrossRef] [PubMed]
- Sha, Z.-D.; Branicio, P.S.; Lee, H.P.; Tay, T.E. Strong and ductile nanolaminate composites combining metallic glasses and nanoglasses. Int. J. Plast. 2017, 90, 231–241. [Google Scholar] [CrossRef]
- Guo, W.; Jägle, E.A.; Choi, P.P.; Yao, J.; Kostka, A.; Schneider, J.M.; Raabe, D. Shear-induced mixing governs code formation of crystalline-amorphous nanolaminates. Phys. Rev. Lett. 2014, 113, 035501. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Abad, O.T.; Wang, F.; Huang, P.; Lu, T.-J.; Xu, K.-W.; Wang, J. Plastic Deformation Modes of CuZr/Cu Multilayers. Sci. Rep. 2016, 6, 23306. [Google Scholar] [CrossRef] [Green Version]
- Şopu, D.; Albe, K.; Eckert, J. Metallic glass nanolaminates with shape memory alloys. Acta Mater. 2018, 159, 344–351. [Google Scholar] [CrossRef]
- Cui, Y.; Shibutani, Y.; Li, S.; Huang, P.; Wang, F. Plastic deformation behaviors of amorphous-Cu50Zr50/crystalline-Cu nanolaminated structures by molecular dynamics simulations. J. Alloy. Compd. 2017, 693, 285–290. [Google Scholar] [CrossRef]
- Luan, Y.W.; Li, C.H.; Zhang, D.; Li, J.; Han, X.J.; Li, J.G. Plastic deformation mechanisms and size effect of Cu50Zr50/Cu amorphous/crystalline nanolaminate: A molecular dynamics study. Comp. Mater. Sci. 2017, 129, 137–146. [Google Scholar] [CrossRef]
- Zhou, H.; Qu, S.; Yang, W. An atomistic investigation of structural evolution in metallic glass matrix composites. Int. J. Plast. 2013, 44, 147–160. [Google Scholar] [CrossRef]
- Brandl, C.; Germann, T.; Misra, A. Structure and shear deformation of metallic crystalline–amorphous interfaces. Acta Mater. 2013, 61, 3600–3611. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Liang, X.; Wu, K.; Liu, G.; Sun, J. Size- and constituent-dependent deformation mechanisms and strain rate sensitivity in nanolaminated crystalline Cu/amorphous Cu–Zr films. Acta Mater. 2015, 95, 132–144. [Google Scholar] [CrossRef]
- Fischer-Cripps, A.C. Nanoindentation, 3rd ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Burgess, T.; Ferry, M. Nanoindentaion of Metallic Glasses. Mater. Today 2009, 12, 24–32. [Google Scholar] [CrossRef]
- Li, J.; Van Vliet, K.J.; Zhu, T.; Yip, S.; Suresh, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nat. Cell Biol. 2002, 418, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Woo, C.H.; Huang, H.; Ngan, A.H.W.; Yu, T.X. Dislocation nucleation in the initial stage during nanoindentation. Philos. Mag. 2003, 83, 3609–3622. [Google Scholar] [CrossRef]
- Lilleodden, E.; Zimmerman, J.; Foiles, S.; Nix, W. Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 2003, 51, 901–920. [Google Scholar] [CrossRef]
- Fu, T.; Peng, X.; Chen, X.; Weng, S.; Hu, N.; Li, Q.; Wang, Z. Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter. Sci. Rep. 2016, 6, 35665. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Falk, M.L. Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Mater. 2007, 55, 4317–4324. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Jiang, M.Q.; Dai, L.H.; Yao, Y.G. Atomistic Origin of Rate-Dependent Serrated Plastic Flow in Metallic Glasses. Nanoscale Res. Lett. 2008, 3, 524–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, C.; Zhu, P.; Fang, F.; Yuan, D.; Shen, X. Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl. Surf. Sci. 2014, 305, 101–110. [Google Scholar] [CrossRef]
- Avila, K.E.; Küchemann, S.; Alhafez, I.A.; Urbassek, H.M. Shear-Transformation Zone Activation during Loading and Unloading in Nanoindentation of Metallic Glasses. Materials 2019, 12, 1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Gupta, P.; Yedla, N. Nanoindentation studies of Zr50Cu50 metallicglass thin film nanocomposites via moleculardynamics simulations. Metall. Res. Technol. 2016, 113, 602. [Google Scholar] [CrossRef]
- Wu, C.-D. Atomistic simulation of nanoformed metallic glass. Appl. Surf. Sci. 2015, 343, 153–159. [Google Scholar] [CrossRef]
- Shimizu, F.; Ogata, S.; Li, J. Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations. Mater. Trans. 2007, 48, 2923–2927. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Jägle, E.; Yao, J.; Maier-Kiener, V.; Korte-Kerzel, S.; Schneider, J.M.; Raabe, D. Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater. 2014, 80, 94–106. [Google Scholar] [CrossRef]
- Şopu, D.; Yuan, X.; Moitzi, F.; Stoica, M.; Eckert, J. Structure-Property Relationships in Shape Memory Metallic Glass Composites. Materials 2019, 12, 1419. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-H.; Chao, K.-C.; Fang, T.-H.; Stachiv, I.; Hsieh, S.-F. Investigations of the mechanical properties of nanoimprinted amorphous Ni–Zr alloys utilizing the molecular dynamics simulation. J. Alloy. Compd. 2016, 659, 224–231. [Google Scholar] [CrossRef]
- Narayan, R.L.; Boopathy, K.; Sen, I.; Hofmann, D.; Ramamurty, U. On the hardness and elastic modulus of bulk metallic glass matrix composites. Scr. Mater. 2010, 63, 768–771. [Google Scholar] [CrossRef]
- Doan, D.-Q.; Fang, T.-H.; Chen, T.-H. Nanotribological characteristics and strain hardening of amorphous Cu64Zr36/ crystalline Cu nanolaminates. Tribol. Int. 2020, 147, 106275. [Google Scholar] [CrossRef]
- Song, H.; Yin, P.; Zuo, X.; An, M.; Li, Y. Atomic simulations of plastic deformation mechanism of MgAl/Mg nanoscale amorphous/crystalline multilayers. J. Non-Cryst. Solids 2018, 500, 121–128. [Google Scholar] [CrossRef]
- Jian, W.; Wang, L.; Yao, X.; Luo, S. Tensile and nanoindentation deformation of amorphous/crystalline nanolaminates: Effects of layer thickness and interface type. Comput. Mater. Sci. 2018, 154, 225–233. [Google Scholar] [CrossRef]
- Song, H.; Xu, J.; Zhang, Y.; Li, S.; Wang, D.; Li, Y. Molecular dynamics study of deformation behavior of crystalline Cu/amorphous Cu50Zr50 nanolaminates. Mater. Des. 2017, 127, 173–182. [Google Scholar] [CrossRef]
- Hua, D.; Ye, W.; Jia, Q.; Zhou, Q.; Xia, Q.; Shi, J.; Deng, Y.; Wang, H. Molecular dynamics simulation of nanoindentation on amorphous/amorphous nanolaminates. Appl. Surf. Sci. 2020, 511, 145545. [Google Scholar] [CrossRef]
- Avila, K.E.; Vardanyan, V.H.; Küchemann, S.; Urbassek, H.M. Response of an amorphous/crystalline interface to nanoindentation: An atomistic study. Appl. Surf. Sci. 2021, 551, 149285. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. Available online: http://lammps.sandia.gov/ (accessed on 10 March 2021). [CrossRef] [Green Version]
- Mendelev, M.; Sordelet, D.J.; Kramer, M.J. Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses. J. Appl. Phys. 2007, 102, 043501. [Google Scholar] [CrossRef]
- Şopu, D.; Stoica, M.; Eckert, J. Deformation behavior of metallic glass composites reinforced with shape memory nanowires studied via molecular dynamics simulations. Appl. Phys. Lett. 2015, 106, 211902. [Google Scholar] [CrossRef] [Green Version]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Ruestes, C.; Bringa, E.; Gao, Y.; Urbassek, H. Molecular Dynamics Modeling of Nanoindentation. In Applied Nanoindentation in Advanced Materials; Tiwari, A., Natarajan, S., Eds.; Wiley: Chichester, UK, 2017; Chapter 14; pp. 313–345. [Google Scholar] [CrossRef]
- Wu, W.-P.; Şopu, D.; Yuan, X.; Eckert, J. Aspect ratio-dependent nanoindentation behavior of Cu64Zr36 metallic glass nanopillars investigated by molecular dynamics simulations. J. Appl. Phys. 2020, 128, 084303. [Google Scholar] [CrossRef]
- Avila, K.E.; Küchemann, S.; Urbassek, H.M. Stucture and size of the plastic zone formed during nanoindentation of a metallic glass. J. Non-Cryst. Solids 2019, 523, 119593. [Google Scholar] [CrossRef] [Green Version]
- Doan, D.-Q.; Fang, T.-H.; Tran, A.-S.; Chen, T.-H. Residual stress and elastic recovery of imprinted Cu-Zr metallic glass films using molecular dynamic simulation. Comput. Mater. Sci. 2019, 170, 109162. [Google Scholar] [CrossRef]
- Greer, A.; Cheng, Y.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R Rep. 2013, 74, 71–132. [Google Scholar] [CrossRef]
- Argon, A. Plastic deformation in metallic glasses. Acta Met. 1979, 27, 47–58. [Google Scholar] [CrossRef]
- Yang, B.; Liu, C.T.; Nieh, T.G. Unified equation for the strength of bulk metallic glasses. Appl. Phys. Lett. 2006, 88, 221911. [Google Scholar] [CrossRef]
- Li, W.; Wei, B.; Zhang, T.; Xing, D.; Zhang, L.; Wang, Y. Study of serrated flow and plastic deformation in metallic glasses through instrumented indentation. Intermetallics 2007, 15, 706–710. [Google Scholar] [CrossRef]
- Şopu, D.; Stukowski, A.; Stoica, M.; Scudino, S. Atomic-Level Processes of Shear Band Nucleation in Metallic Glasses. Phys. Rev. Lett. 2017, 119, 195503. [Google Scholar] [CrossRef]
- Cheng, L.; Jiao, Z.M.; Ma, S.G.; Qiao, J.W.; Wang, Z.H. Serrated flow behaviors of a Zr-based bulk metallic glass by nanoindentation. J. Appl. Phys. 2014, 115, 084907. [Google Scholar] [CrossRef]
- Limbach, R.; Kosiba, K.; Pauly, S.; Kühn, U.; Wondraczek, L. Serrated flow of CuZr-based bulk metallic glasses probed by nanoindentation: Role of the activation barrier, size and distribution of shear transformation zones. J. Non-Cryst. Solids 2017, 459, 130–141. [Google Scholar] [CrossRef]
- Zhong, C.; Zhang, H.; Cao, Q.; Wang, X.; Zhang, D.; Ramamurty, U.; Jiang, J. On the critical thickness for non-localized to localized plastic flow transition in metallic glasses: A molecular dynamics study. Scr. Mater. 2016, 114, 93–97. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Wu, C.-Y.; Chu, J.P.; Liaw, P.K. Indentation Behavior of Zr-Based Metallic-Glass Films via Molecular-Dynamics Simulations. Met. Mater. Trans. A 2010, 41, 3010–3017. [Google Scholar] [CrossRef]
- Falk, M.L.; Langer, J.S. Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 1998, 57, 7192–7205. [Google Scholar] [CrossRef] [Green Version]
- Goryaeva, A.M.; Fusco, C.; Bugnet, M.; Amodeo, J. Influence of an amorphous surface layer on the mechanical properties of metallic nanoparticles under compression. Phys. Rev. Mater. 2019, 3, 033606. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.-P.; Şopu, D.; Yuan, X.; Adjaoud, O.; Song, K.; Eckert, J. Atomistic understanding of creep and relaxation mechanisms of Cu64Zr36 metallic glass at different temperatures and stress levels. J. Non–Cryst. Solids 2021, 559, 120676. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.-P.; Şopu, D.; Eckert, J. Molecular Dynamics Study of the Nanoindentation Behavior of Cu64Zr36/Cu Amorphous/Crystalline Nanolaminate Composites. Materials 2021, 14, 2756. https://doi.org/10.3390/ma14112756
Wu W-P, Şopu D, Eckert J. Molecular Dynamics Study of the Nanoindentation Behavior of Cu64Zr36/Cu Amorphous/Crystalline Nanolaminate Composites. Materials. 2021; 14(11):2756. https://doi.org/10.3390/ma14112756
Chicago/Turabian StyleWu, Wen-Ping, Daniel Şopu, and Jürgen Eckert. 2021. "Molecular Dynamics Study of the Nanoindentation Behavior of Cu64Zr36/Cu Amorphous/Crystalline Nanolaminate Composites" Materials 14, no. 11: 2756. https://doi.org/10.3390/ma14112756
APA StyleWu, W. -P., Şopu, D., & Eckert, J. (2021). Molecular Dynamics Study of the Nanoindentation Behavior of Cu64Zr36/Cu Amorphous/Crystalline Nanolaminate Composites. Materials, 14(11), 2756. https://doi.org/10.3390/ma14112756