Effect of a Sulfur Precursor on the Hydrothermal Synthesis of Cu2MnSnS4
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Microspheres
2.3. Characterization of Microspheres
3. Results and Discussion
X-ray Diffraction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Donne, A.; Trifiletti, V.; Binetti, S. New Earth-Abundant Thin Film Solar Cells Based on Chalcogenides. Front. Chem. 2019, 7, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanujam, J.; Singh, U.P. Copper indium gallium selenide based solar cells—A review. Energy Environ. Sci. 2017, 10, 1306–1319. [Google Scholar] [CrossRef]
- Hou, H.; Guan, H.; Li, L. Synthesis of Cu2FeSnS4 thin films with stannite and wurtzite structure directly on glass substrates via the solvothermal method. J. Mater. Sci. Mater. Electron. 2017, 28, 7745–7748. [Google Scholar] [CrossRef]
- Sarilmaz, A.; Özel, F.; Karabulut, A.; Orak, I.; Şahinkaya, M.A. The effects of temperature and frequency changes on the electrical characteristics of hot-injected Cu2MnSnS4 chalcogenide-based heterojunction. Phys. B Condens. Matter 2020, 580, 411821. [Google Scholar] [CrossRef]
- Kocyigit, A.; Yıldırım, M.; Sarılmaz, A.; Ozel, F. The Au/Cu2WSe4/p-Si photodiode: Electrical and morphological characterization. J. Alloy. Compd. 2019, 780, 186–192. [Google Scholar] [CrossRef]
- Chen, S.; Gong, X.G.; Walsh, A.; Wei, S.-H. Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights. Appl. Phys. Lett. 2009, 94, 041903. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Walsh, A.; Luo, Y.; Yang, J.-H.; Gong, X.G.; Wei, S.-H. Erratum: Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors [Phys. Rev. B82, 195203 (2010)]. Phys. Rev. B 2011, 83, 159904. [Google Scholar] [CrossRef]
- Tiong, V.T.; Zhang, Y.; Bell, J.M.; Wang, H. Phase-selective hydrothermal synthesis of Cu2ZnSnS4 nanocrystals: The effect of the sulphur precursor. CrystEngComm 2014, 16, 4306–4313. [Google Scholar] [CrossRef]
- Zou, Y.; Su, X.; Jiang, J. Phase-Controlled Synthesis of Cu2ZnSnS4 Nanocrystals: The Role of Reactivity between Zn and S. J. Am. Chem. Soc. 2013, 135, 18377–18384. [Google Scholar] [CrossRef]
- Li, Z.; Lui, A.L.K.; Lam, K.H.; Xi, L.; Lam, Y.M. ChemInform Abstract: Phase-Selective Synthesis of Cu2ZnSnS4 Nanocrystals Using Different Sulfur Precursors. ChemInform 2014, 45. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Das, S.; Yang, C.-Y.; Sung, J.-C.; Lu, C.-H. Phase-controlled synthesis of Cu2ZnSnS4 powders via the microwave-assisted solvothermal route. J. Alloys Compd. 2015, 632, 354–360. [Google Scholar] [CrossRef]
- Long, F.; Chi, S.; He, J.; Wang, J.; Wu, X.; Mo, S.; Zou, Z. Synthesis of hexagonal wurtzite Cu2ZnSnS4 prisms by an ultrasound-assisted microwave solvothermal method. J. Solid State Chem. 2015, 229, 228–234. [Google Scholar] [CrossRef]
- Rudisch, K.; Espinosa-García, W.F.; Osorio-Guillén, J.M.; Araujo, C.M.; Platzer-Björkman, C.; Scragg, J.J.S. Structural and Electronic Properties of Cu2MnSnS4 from Experiment and First-Principles Calculations. Phys. Status Solidi (b) 2019, 256, 1–10. [Google Scholar] [CrossRef]
- Guan, H.; Wang, X.; Huang, Y. Optical, photocatalytic and thermoelectric properties of Cu2MeSnS4 (Me = Mn2+, Fe2+, Co2+) nanocrystals via microwave-assisted solvothermal method. Chalcogenide Lett. 2018, 15, 435–440. [Google Scholar]
- Guan, H.; Hou, H.; Li, M.; Cui, J. Photocatalytic and thermoelectric properties of Cu2MnSnS4 nanoparticles synthesized via solvothermal method. Mater. Lett. 2017, 188, 319–322. [Google Scholar] [CrossRef]
- Li, X.; Hou, Z.; Gao, S.; Zeng, Y.; Ao, J.; Zhou, Z.; Da, B.; Liu, W.; Sun, Y.; Zhang, Y. Efficient Optimization of the Performance of Mn2+ -Doped Kesterite Solar Cell: Machine Learning Aided Synthesis of High Efficient Cu2(Mn,Zn)Sn(S,Se)4 Solar Cells. Sol. RRL 2018, 2. [Google Scholar] [CrossRef]
- Yu, J.; Deng, H.; Zhang, Q.; Tao, J.; Sun, L.; Yang, P.; Chu, J. The role of sulfurization temperature on the morphological, structural and optical properties of electroplated Cu2MnSnS4 absorbers for photovoltaics. Mater. Lett. 2018, 233, 111–114. [Google Scholar] [CrossRef]
- Cristóbal-García, J.D.; Paraguay-Delgado, F.; Herrera-Pérez, G.; Sato-Berrú, R.Y.; Mathews, N.R. Polyvinylpyrrolidone influence on physical properties of Cu2ZnSnS4 nanoparticles. J. Mater. Sci. Mater. Electron. 2018, 29, 20302–20311. [Google Scholar] [CrossRef]
- Maldar, P.; Gaikwad, M.; Mane, A.; Nikam, S.; Desai, S.; Giri, S.; Sarkar, A.; Moholkar, A. Fabrication of Cu2CoSnS4 thin films by a facile spray pyrolysis for photovoltaic application. Sol. Energy 2017, 158, 89–99. [Google Scholar] [CrossRef]
- Dridi, S.; Aubry, E.; Bitri, N.; Chaabouni, F.; Briois, P. Growth and Characterization of Cu2MnSnS4 Thin Films Synthesized by Spray Pyrolysis under Air Atmosphere. Coatings 2020, 10, 963. [Google Scholar] [CrossRef]
- Marciniak, H.; Diduszko, R.; Kozak, M. XRAYAN-Program do rentgenowskiej analizyfazowej; KOMA: Warszawa, Poland, 2006; Available online: http://www.w-musial.home.pl/grafika/xrayan.pdf (accessed on 22 April 2021).
- Von Dreele, R.B.; Larson, A.C. General Structure Analysis Sytem (GSAS); Los Alamos Natl. Lab.: New Mexico, NW, USA, 1994; pp. 86–748. Available online: https://11bm.xray.aps.anl.gov/documents/GSASManual.pdf (accessed on 22 April 2021).
- Liang, X.; Guo, P.; Wang, G.; Deng, R.; Pan, D.; Wei, X. Dilute magnetic semiconductor Cu2MnSnS4 nanocrystals with a novel zincblende and wurtzite structure. RSC Adv. 2012, 2, 5044–5046. [Google Scholar] [CrossRef]
- Rudashevskiy, N.S. Tetrawickmanite, Tetragonal MnSn(OH)6—A New Mineral From North Carolina, And The Stottite Group. Int. Geol. Rev. 1983, 25, 983–988. [Google Scholar] [CrossRef]
- Gürel, T.; Sevik, C.; Çağın, T. Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures. Phys. Rev. B 2011, 84, 84. [Google Scholar] [CrossRef]
- Havryliuk, Y.; Valakh, M.Y.; Dzhagan, V.; Greshchuk, O.; Yukhymchuk, V.; Raevskaya, A.; Stroyuk, O.; Selyshchev, O.; Gaponik, N.; Zahn, D.R.T. Raman characterization of Cu2ZnSnS4 nanocrystals: Phonon confinement effect and formation of CuxS phases. RSC Adv. 2018, 8, 30736–30746. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, R.R.; Zhenghua, S.; Xin, Z.; Baikie, T.; Woei, L.S.; Shukla, S.; Batabyal, S.K.; Gunawan, O.; Wong, L.H. Photovoltaic effect in earth abundant solution processed Cu2MnSnS4 and Cu2MnSn(S,Se)4 thin films. Sol. Energy Mater. Sol. Cells 2016, 157, 867–873. [Google Scholar] [CrossRef]
- Jiang, H.; Dai, P.; Feng, Z.; Fan, W.; Zhan, J. Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. J. Mater. Chem. 2012, 22, 7502–7506. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waluś, E.; Manecki, M.; Cios, G.; Tokarski, T. Effect of a Sulfur Precursor on the Hydrothermal Synthesis of Cu2MnSnS4. Materials 2021, 14, 3457. https://doi.org/10.3390/ma14133457
Waluś E, Manecki M, Cios G, Tokarski T. Effect of a Sulfur Precursor on the Hydrothermal Synthesis of Cu2MnSnS4. Materials. 2021; 14(13):3457. https://doi.org/10.3390/ma14133457
Chicago/Turabian StyleWaluś, Edyta, Maciej Manecki, Grzegorz Cios, and Tomasz Tokarski. 2021. "Effect of a Sulfur Precursor on the Hydrothermal Synthesis of Cu2MnSnS4" Materials 14, no. 13: 3457. https://doi.org/10.3390/ma14133457
APA StyleWaluś, E., Manecki, M., Cios, G., & Tokarski, T. (2021). Effect of a Sulfur Precursor on the Hydrothermal Synthesis of Cu2MnSnS4. Materials, 14(13), 3457. https://doi.org/10.3390/ma14133457