Removal of Pesticides from Waters by Adsorption: Comparison between Synthetic Zeolites and Mesoporous Silica Materials. A Review
Abstract
:1. Introduction
2. Characterization of Adsorbents
2.1. Mesoporous Silica Materials
2.2. Synthetic Zeolites
3. Immobilization of Pesticides onto Different Materials
3.1. Mesoporous Silica Materials
3.1.1. Organochlorine Pesticides
3.1.2. Organophosphorus Pesticides
3.1.3. Other Groups of Pesticides
3.2. Synthetic Zeolites
3.2.1. Organochlorine and Organophosphorus Pesticides
3.2.2. Other Groups of Pesticides
Triazine and Urea Pesticides
Glyphosate-Based Pesticides
4. Regeneration and Recyclability
4.1. Mesoporous Silica Materials
4.2. Synthetic Zeolites
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ioannides, C. Public-health impact of pesticides used in agriculture—WHO. J. R. Soc. Health 1991, 111, 206. [Google Scholar] [CrossRef]
- Abhilash, P.C.; Singh, N. Pesticide use and application: An Indian scenario. J. Hazard. Mater. 2009, 165, 1–12. [Google Scholar] [CrossRef]
- Ahmad, T.; Rafatullah, M.; Ghazali, A.; Sulaiman, O.; Hashim, R.; Ahmad, A. Removal of Pesticides from Water and Wastewater by Different Adsorbents: A Review. J. Environ. Sci. Health Part C-Environ. Carcinog. Ecotoxicol. Rev. 2010, 28, 231–271. [Google Scholar] [CrossRef]
- Miller, G.T. Biodiversity. In Sustaining the Earth; Thompson Learning, Inc.: Pacific Grove, CA, USA, 1994; pp. 211–216. ISBN 9780495556879. [Google Scholar]
- Loos, R.; Gawlik, B.M.; Locoro, G.; Rimaviciute, E.; Contini, S.; Bidoglio, G. EU-wide survey of polar organic persistent pollutants in European river waters. Environ. Pollut. 2009, 157, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Skinner, J.A.; Lewis, K.A.; Bardon, K.S.; Tucker, P.; Catt, J.A.; Chambers, B.J. An overview of the environmental impact of agriculture in the UK. J. Environ. Manag. 1997, 50, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Cooper, J.; Dobson, H. The benefits of pesticides to mankind and the environment. Crop Prot. 2007, 26, 1337–1348. [Google Scholar] [CrossRef]
- Bowles, R.G.; Webster, J.P.G. Some problems associated with the analysis of the costs and benefits of pesticides. Crop Prot. 1995, 14, 593–600. [Google Scholar] [CrossRef]
- Tadeo, J.L. Analysis of Pesticides in Food and Environmental Samples, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781138486034. [Google Scholar]
- Rogan, W.J.; Chen, A.M. Health risks and benefits of bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT). Lancet 2005, 366, 763–773. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Lekei, E.; Ngowi, A.V.; Kapeleka, J.; London, L. Acute pesticide poisoning amongst adolescent girls and women in northern Tanzania. BMC Public Health 2020, 20, 8. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.Y.; Gao, Y.X.; Walline, J.; Lu, X.; Zhao, L.N.; Huang, Y.X.; Tao, J.; Yu, A.Y.; Ta, N.; Xiao, R.J.; et al. Role of penehyclidine in acute organophosphorus pesticide poisoning. World J. Emerg. Med. 2020, 11, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Mostafalou, S.; Abdollahi, M. Current concerns on genotoxicity of pesticides. Int. J. Pharmacol. 2012, 8, 473–474. [Google Scholar] [CrossRef] [Green Version]
- Mostafalou, S.; Abdollahi, M. The Role of Environmental Pollution of Pesticides in Human Diabetes. Int. J. Pharmacol. 2012, 8, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, J.K.; Mittal, M.; Saraf, P.; Kumari, P. Pesticides induced oxidative stress and female infertility: A review. Toxin Rev. 2020, 39, 1–13. [Google Scholar] [CrossRef]
- Ionel, I.L.; Mara, G.; Stefania, R.; Margarita, G.O.; Corina, P. A hazard to human health—Pesticide residues in some vegetal and animal foodstuff. J. Biotechnol. 2019, 305, S22–S23. [Google Scholar] [CrossRef]
- Zacharia, J.T. Identity, Physical and Chemical Properties of Pesticides. In Pesticides in the Modern World: Trends in Pesticides Analysis; Stoytcheva, M., Ed.; IntechOpen: Rijeka, Croatia, 2011; ISBN 978-953-307-437-5. [Google Scholar]
- Buchel, K.H. Chemistry of pesticides. J. Environ. Sci. Heal.—Part B Pestic. Food Contam. Agric. Wastes 1983, B18, 419–643. [Google Scholar]
- Khairy, M.; Ayoub, H.A.; Rashwan, F.A.; Abdel-Hafez, H.F. Chemical modification of commercial kaolin for mitigation of organic pollutants in environment via adsorption and generation of inorganic pesticides. Appl. Clay Sci. 2018, 153, 124–133. [Google Scholar] [CrossRef]
- Strekopytov, S.; Brownscombe, W.; Lapinee, C.; Sykes, D.; Spratt, J.; Jeffries, T.E.; Jones, C.G. Arsenic and mercury in bird feathers: Identification and quantification of inorganic pesticide residues in natural history collections using multiple analytical and imaging techniques. Microchem. J. 2017, 130, 301–309. [Google Scholar] [CrossRef]
- Zolgharnein, J.; Shahmoradi, A.; Ghasemi, J. Pesticides Removal Using Conventional and Low-Cost Adsorbents: A Review. Clean-Soil Air Water 2011, 39, 1105–1119. [Google Scholar] [CrossRef]
- MacBean, C. Pesticides Manual, 1st ed.; British Crop Protection Council: London, UK, 2012. [Google Scholar]
- Drum, C. Soil Chemistry of Pesticides; PPG Industries, Inc.: Pittsburgh, PA, USA, 1980. [Google Scholar]
- Soderlund, D.M. Toxicology and Mode of Action of Pyrethroid Insecticides. In Hayes’ Handbook of Pesticide Toxicology, 3rd ed.; Krieger, R., Ed.; Elsevier Academic Press Inc.: Geneva, NY, USA, 2010; pp. 1665–1686. ISBN 978-0-08-092201-0. [Google Scholar]
- Nwankwegu, A.S.; Onwosi, C.O. Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environ. Technol. Innov. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Marican, A.; Durán-Lara, E.F. A review on pesticide removal through different processes. Environ. Sci. Pollut. Res. 2018, 25, 2051–2064. [Google Scholar] [CrossRef] [PubMed]
- Helbling, D.E. Bioremediation of pesticide-contaminated water resources: The challenge of low concentrations. Curr. Opin. Biotechnol. 2015, 33, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Bfezinova, T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environ. Int. 2015, 75, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Campos, J.; Dendooven, L.; Alvarez-Bernal, D.; Contreras-Ramos, S.M. Potential of earthworms to accelerate removal of organic contaminants from soil: A review. Appl. Soil Ecol. 2014, 79, 10–25. [Google Scholar] [CrossRef]
- Moore, M.T.; Tyler, H.L.; Locke, M.A. Aqueous pesticide mitigation efficiency of Typha latifolia (L.), Leersia oryzoides (L.) Sw., and Sparganium americanum Nutt. Chemosphere 2013, 92, 1307–1313. [Google Scholar] [CrossRef]
- Maqbool, Z.; Hussain, S.; Imran, M.; Mahmood, F.; Shahzad, T.; Ahmed, Z.; Azeem, F.; Muzammil, S. Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: A critical review. Environ. Sci. Pollut. Res. 2016, 23, 16904–16925. [Google Scholar] [CrossRef] [PubMed]
- Hamby, D.M. Site remediation techniques supporting environmental restoration activities—A review. Sci. Total Environ. 1996, 191, 203–224. [Google Scholar] [CrossRef]
- Cheng, M.; Zeng, G.M.; Huang, D.L.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chem. Eng. J. 2016, 284, 582–598. [Google Scholar] [CrossRef]
- Khan, F.I.; Husain, T.; Hejazi, R. An overview and analysis of site remediation technologies. J. Environ. Manag. 2004, 71, 95–122. [Google Scholar] [CrossRef]
- Rani, S.; Sud, D. Role of enhanced solar radiation for degradation of triazophos pesticide in soil matrix. Sol. Energy 2015, 120, 494–504. [Google Scholar] [CrossRef]
- Shea, P.J.; Machacek, T.A.; Comfort, S.D. Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environ. Pollut. 2004, 132, 183–188. [Google Scholar] [CrossRef]
- Ibhadon, A.O.; Fitzpatrick, P. Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts 2013, 3, 189–218. [Google Scholar] [CrossRef] [Green Version]
- Matouq, M.A.; Al-Anber, Z.A.; Tagawa, T.; Aljbour, S.; Al-Shannag, M. Degradation of dissolved diazinon pesticide in water using the high frequency of ultrasound wave. Ultrason. Sonochem. 2008, 15, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Fukuzumi, S.; Lee, Y.-M.; Jung, J.; Nam, W. Thermal and photocatalytic oxidation of organic substrates by dioxygen with water as an electron source. Green Chem. 2018, 20, 948–963. [Google Scholar] [CrossRef]
- Barbusinski, K. Fenton reaction—controversy concerning the chemistry. Ecol. Chem. Eng. S-Chemia I Inz. Ekol. S 2009, 16, 347–358. [Google Scholar]
- Brooks, K.M.; Stierns, A.R.; Mahnken, C.V.W.; Blackburn, D.B. Chemical and biological remediation of the benthos near Atlantic salmon farms. Aquaculture 2003, 219, 355–377. [Google Scholar] [CrossRef]
- Bonvin, F.; Jost, L.; Randin, L.; Bonvin, E.; Kohn, T. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent. Water Res. 2016, 90, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Cruz, M.S.; Sanchez-Martin, M.J.; Andrades, M.S.; Sanchez-Camazano, M. Modification of clay barriers with a cationic surfactant to improve the retention of pesticides in soils. J. Hazard. Mater. 2007, 139, 363–372. [Google Scholar] [CrossRef]
- Legrouri, A.; Lakraimi, M.; Barroug, A.; De Roy, A.; Besse, J.P. Removal of the herbicide 2,4-dichlorophenoxyacetate from water to zinc-aluminium-chloride layered double hydroxides. Water Res. 2005, 39, 3441–3448. [Google Scholar] [CrossRef] [PubMed]
- Akcay, G.; Akcay, M.; Yurdakoc, K. The characterization of prepared organomontmorillonite (DEDMAM) and sorption of phenoxyalkanoic acid herbicides from aqueous solution. J. Colloid Interface Sci. 2006, 296, 428–433. [Google Scholar] [CrossRef]
- Wang, S.B.; Wu, H.W. Environmental-benign utilisation of fly ash as low-cost adsorbents. J. Hazard. Mater. 2006, 136, 482–501. [Google Scholar] [CrossRef]
- Singh, N. Adsorption of herbicides on coal fly ash from aqueous solutions. J. Hazard. Mater. 2009, 168, 233–237. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Martins, I.; Ratola, N.; Alves, A.; Santos, L. Removal of 2,4-dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant. J. Hazard. Mater. 2007, 143, 535–540. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, D. Ordered mesoporous materials as adsorbents. Chem. Commun. 2011, 47, 3332–3338. [Google Scholar] [CrossRef] [PubMed]
- Diagboya, P.N.; Olu-Owolabi, B.I.; Adebowale, K.O. Microscale scavenging of pentachlorophenol in water using amine and tripolyphosphate-grafted SBA-15 silica: Batch and modeling studies. J. Environ. Manag. 2014, 146, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momcilovic, M.Z.; Randelovic, M.S.; Zarubica, A.R.; Onjia, A.E.; Kokunesoski, M.; Matovic, B.Z. SBA-15 templated mesoporous carbons for 2,4-dichlorophenoxyacetic acid removal. Chem. Eng. J. 2013, 220, 276–283. [Google Scholar] [CrossRef]
- Bui, T.X.; Kang, S.-Y.; Lee, S.-H.; Choi, H. Organically functionalized mesoporous SBA-15 as sorbents for removal of selected pharmaceuticals from water. J. Hazard. Mater. 2011, 193, 156–163. [Google Scholar] [CrossRef]
- Dou, B.; Hu, Q.; Li, J.; Qiao, S.; Hao, Z. Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry. J. Hazard. Mater. 2011, 186, 1615–1624. [Google Scholar] [CrossRef]
- Ozin, G.A.; Kresge, C.T.; Yang, H. Nucleation, growth and form of mesoporous silica: Role of defects and a language of shape. Stud. Surf. Sci. Catal. 1998, 117, 119–127. [Google Scholar]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Trewyn, B.G.; Slowing, I.I.; Giri, S.; Chen, H.T.; Lin, V.S.Y. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc. Chem. Res. 2007, 40, 846–853. [Google Scholar] [CrossRef] [Green Version]
- Cecilia, J.A.; Tost, R.M.; Millan, M.R. Mesoporous Materials: From Synthesis to Applications. Int. J. Mol. Sci. 2019, 20, 3213. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.Y.; Feng, J.L.; Huo, Q.S.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Katiyar, A.; Yadav, S.; Smirniotis, P.G.; Pinto, N.G. Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. J. Chromatogr. A 2006, 1122, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Asefa, T.; Tao, Z.M. Mesoporous silica and organosilica materials—Review of their synthesis and organic functionalization. Can. J. Chem. 2012, 90, 1015–1031. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, X.J.; He, C.L. Mesoporous silica nanoparticles for tissue-engineering applications. Wiley Interdiscip. Rev. Nanobiotechnology 2019, 11, 22. [Google Scholar] [CrossRef]
- Laskowski, L.; Laskowska, M.; Vila, N.; Schabikowski, M.; Walcarius, A. Mesoporous Silica-Based Materials for Electronics-Oriented Applications. Molecules 2019, 24, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jehng, J.M.; Tung, W.C.; Kuo, C.H. The formation mechanisms of multi-wall carbon nanotubes over the Ni modified MCM-41 catalysts. J. Porous Mater. 2008, 15, 43–51. [Google Scholar] [CrossRef]
- Oye, G.; Sjoblom, J.; Stocker, M. Synthesis, characterization and potential applications of new materials in the mesoporous range. Adv. Colloid Interface Sci. 2001, 89, 439–466. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Huo, Q.S.; Feng, J.L.; Chmelka, B.F.; Stucky, G.D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120, 10546. [Google Scholar] [CrossRef]
- Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed. 2006, 45, 3216–3251. [Google Scholar] [CrossRef]
- Nishihara, H.; Kyotani, T. Templated nanocarbons for energy storage. Adv. Mater. 2012, 24, 4473–4498. [Google Scholar] [CrossRef] [PubMed]
- Da’na, E. Adsorption of heavy metals on functionalized-mesoporous silica: A review. Microporous Mesoporous Mater. 2017, 247, 145–157. [Google Scholar] [CrossRef]
- Gargiulo, N.; Cusano, A.M.; Causa, F.; Caputo, D.; Netti, P.A. Silver-containing mesoporous bioactive glass with improved antibacterial properties. J. Mater. Sci. Med. 2013, 24, 2129–2135. [Google Scholar] [CrossRef] [PubMed]
- Pourshahrestani, S.; Zeimaran, E.; Kadri, N.A.; Gargiulo, N.; Samuel, S.; Naveen, S.V.; Kamarul, T.; Towler, M.R. Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy. J. Mater. Chem. B 2016, 4, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, N.; Verlotta, A.; Peluso, A.; Aprea, P.; Caputo, D. Modeling the performances of a CO2 adsorbent based on polyethylenimine-functionalized macro-/mesoporous silica monoliths. Microporous Mesoporous Mater. 2015, 215, 1–7. [Google Scholar] [CrossRef]
- Serna-Guerrero, R.; Sayari, A. Applications of pore-expanded mesoporous silica. 7. Adsorption of volatile organic compounds. Environ. Sci. Technol. 2007, 41, 4761–4766. [Google Scholar] [CrossRef]
- Walcarius, A.; Mercier, L. Mesoporous organosilica adsorbents: Nanoengineered materials for removal of organic and inorganic pollutants. J. Mater. Chem. 2010, 20, 4478–4511. [Google Scholar] [CrossRef]
- Li, C.C.; Qiao, X.C. A new approach to prepare mesoporous silica using coal fly ash. Chem. Eng. J. 2016, 302, 388–394. [Google Scholar] [CrossRef]
- Balcar, H.; Cejka, J. Mesoporous molecular sieves as advanced supports for olefin metathesis catalysts. Coord. Chem. Rev. 2013, 257, 3107–3124. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Shadjou, N.; Eskandani, M.; de la Guardia, M.; Omidinia, E. Mesoporous silica materials for use in electrochemical immunosensing. TrAC-Trends Anal. Chem. 2013, 45, 93–106. [Google Scholar] [CrossRef]
- Motahar, S.; Nikkam, N.; Alemrajabi, A.A.; Khodabandeh, R.; Toprak, M.S.; Muhammed, M. A novel phase change material containing mesoporous silica nanoparticles for thermal storage: A study on thermal conductivity and viscosity. Int. Commun. Heat Mass Transf. 2014, 56, 114–120. [Google Scholar] [CrossRef]
- Jha, B.; Singh, D.N. A review on synthesis, characterization and industrial applications of flyash zeolites. J. Mater. Educ. 2011, 33, 65–132. [Google Scholar]
- Scott, J.; Guang, D.; Naeramitmarnsuk, K.; Thabuot, M.; Amal, R. Zeolite synthesis from coal fly ash for the removal of lead ions from aqueous solution. J. Chem. Technol. Biotechnol. 2002, 77, 63–69. [Google Scholar] [CrossRef]
- Rayalu, S.; Meshram, S.U.; Hasan, M.Z. Highly crystalline faujasitic zeolites from flyash. J. Hazard. Mater. 2000, 77, 123–131. [Google Scholar] [CrossRef]
- Baerlocher, C.; Meier, W.M.; Olson, D.H. Atlas of Zeolite Framework Types, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2001; ISBN 978-0-444-50701-3. [Google Scholar]
- Qiu, L.Y.; Murashov, V.; White, M.A. Zeolite 4A: Heat capacity and thermodynamic properties. Solid State Sci. 2000, 2, 841–846. [Google Scholar] [CrossRef]
- Singh, D.N.; Kolay, P.K. Simulation of ash-water interaction and its influence on ash characteristics. Prog. Energy Combust. Sci. 2002, 28, 267–299. [Google Scholar] [CrossRef]
- Beving, D.E.; O’Neill, C.R.; Yan, Y.S. Hydrophilic and antimicrobial low-silica-zeolite LTA and high-silica-zeolite MFI hybrid coatings on aluminum alloys. Microporous Mesoporous Mater. 2008, 108, 77–85. [Google Scholar] [CrossRef]
- Kumar, P.; Mal, N.; Oumi, Y.; Yamana, K.; Sano, T. Mesoporous materials prepared using coal fly ash as the silicon and aluminium source. J. Mater. Chem. 2001, 11, 3285–3290. [Google Scholar] [CrossRef]
- Davis, M.E.; Lobo, R.F. Zeolite and Molecular Sieve Synthesis. Chem. Mater. 1992, 4, 756–768. [Google Scholar] [CrossRef]
- Querol, X.; Moreno, N.; Umana, J.C.; Alastuey, A.; Hernandez, E.; Lopez-Soler, A.; Plana, F. Synthesis of zeolites from coal fly ash: An overview. Int. J. Coal Geol. 2002, 50, 413–423. [Google Scholar] [CrossRef]
- Querol, X.; Moreno, N.; Umana, J.C.; Juan, R.; Hernandez, S.; Fernandez-Pereira, C.; Ayora, C.; Janssen, M.; Garcia-Martinez, J.; Linares-Solano, A.; et al. Application of zeolitic material synthesised from fly ash to the decontamination of waste water and flue gas. J. Chem. Technol. Biotechnol. 2002, 77, 292–298. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Moreno, N.; Alvarez-Ayuso, E.; Garcia-Sanchez, A.; Cama, J.; Ayora, C.; Simon, M. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash. Chemosphere 2006, 62, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, A.; Grutzeck, M.W. The adsorption of SO2 by zeolites synthesized from fly ash. Environ. Sci. Technol. 1999, 33, 1464–1469. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Yu, J. Applications of Zeolites in Sustainable Chemistry. Chem 2017, 3, 928–949. [Google Scholar] [CrossRef] [Green Version]
- Udhoji, J.S.; Bansiwal, A.K.; Meshram, S.U.; Rayalu, S.S. Improvement in optical brightness of fly ash based zeolite-A for use as detergent builder. J. Sci. Ind. Res. 2005, 64, 367–371. [Google Scholar]
- Canpolat, F.; Yilmaz, K.; Kose, M.M.; Sumer, M.; Yurdusev, M.A. Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production. Cem. Concr. Res. 2004, 34, 731–735. [Google Scholar] [CrossRef]
- De Smedt, C.; Someus, E.; Spanoghe, P. Potential and actual uses of zeolites in crop protection. Pest Manag. Sci. 2015, 71, 1355–1367. [Google Scholar] [CrossRef]
- Anfray, C.; Dong, B.A.; Komaty, S.; Mintova, S.; Valable, S. Acute Toxicity of Silver Free and Encapsulated in Nanosized Zeolite for Eukaryotic Cells. ACS Appl. Mater. Interfaces 2017, 9, 13849–13854. [Google Scholar] [CrossRef]
- Marouf-Khelifa, K.; Khelifa, A.; Belhakem, A.; Marouf, R.; Abdelmalek, F.; Addou, A. The adsorption of pentachlorophenol from aqueous solutions onto exchanged Al-MCM-41 materials. Adsorpt. Sci. Technol. 2004, 22, 1–12. [Google Scholar] [CrossRef]
- Sawicki, R.; Mercier, L. Evaluation of mesoporous cyclodextrin-silica nanocomposites for the removal of pesticides from aqueous media. Environ. Sci. Technol. 2006, 40, 1978–1983. [Google Scholar] [CrossRef]
- Wang, H.L.; Tian, H.; Hao, Z.P. Study of DDT and its derivatives DDD, DDE adsorption and degradation over Fe-SBA-15 at low temperature. J. Environ. Sci. 2012, 24, 536–540. [Google Scholar] [CrossRef]
- Tian, H.; Li, J.J.; Zou, L.D.; Mua, Z.; Hao, Z.P. Removal of DDT from aqueous solutions using mesoporous silica materials. J. Chem. Technol. Biotechnol. 2009, 84, 490–496. [Google Scholar] [CrossRef]
- Tian, H.; Li, J.J.; Shen, Q.; Wang, H.L.; Hao, Z.P.; Zou, L.D.; Hu, Q. Using shell-tunable mesoporous Fe3O4@HMS and magnetic separation to remove DDT from aqueous media. J. Hazard. Mater. 2009, 171, 459–464. [Google Scholar] [CrossRef]
- Amani, M.A.; Latifi, A.M.; Tahvildari, K.; Karimian, R. Removal of diazinon pesticide from aqueous solutions using MCM-41 type materials: Isotherms, kinetics and thermodynamics. Int. J. Environ. Sci. Technol. 2018, 15, 1301–1312. [Google Scholar] [CrossRef]
- Armaghan, M.; Amini, M.M. Adsorption of diazinon and fenitothion on MCM-41 and MCM-48 mesoporous silicas from non-polar solvent. Colloid J. 2009, 71, 583–588. [Google Scholar] [CrossRef]
- Chen, J.L.; Gao, L.; Jiang, Q.; Hou, Q.; Hong, Y.; Shen, W.J.; Wang, Y.; Zhu, J.H. Fabricating efficient porous sorbents to capture organophosphorus pesticide in solution. Microporous Mesoporous Mater. 2020, 294. [Google Scholar] [CrossRef]
- Ortiz Otalvaro, J.; Avena, M.; Brigante, M. Adsorption of organic pollutants by amine functionalized mesoporous silica in aqueous solution. Effects of pH, ionic strength and some consequences of APTES stability. J. Environ. Chem. Eng. 2019, 7. [Google Scholar] [CrossRef]
- Pukcothanung, Y.; Siritanon, T.; Rangsriwatananon, K. The efficiency of zeolite Y and surfactant-modified zeolite Y for removal of 2,4-dichlorophenoxyacetic acid and 1,1″-dimethyl-4,4″-bipyridinium ion. Microporous Mesoporous Mater. 2018, 258, 131–140. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Bispo, C.; Bion, N.; Ferreira, P.; Batonneau-Gener, I. Periodic Mesoporous Organosilicas as adsorbents for the organic pollutants removal in aqueous phase. Microporous Mesoporous Mater. 2014, 200, 117–123. [Google Scholar] [CrossRef]
- Rasamimanana, S.; Mignard, S.; Batonneau-Gener, I. Hierarchical zeolites as adsorbents for mesosulfuron-methyl removal in aqueous phase. Microporous Mesoporous Mater. 2016, 226, 153–161. [Google Scholar] [CrossRef]
- Rivoira, L.; Appendini, M.; Fiorilli, S.; Onida, B.; Del Bubba, M.; Bruzzoniti, M.C. Functionalized iron oxide/SBA-15 sorbent: Investigation of adsorption performance towards glyphosate herbicide. Environ. Sci. Pollut. Res. 2016, 23, 21682–21691. [Google Scholar] [CrossRef]
- Vasiljevic, B.N.; Obradovic, M.; Bajuk-Bogdanovic, D.; Milojevic-Rakic, M.; Jovanovic, Z.; Gavrilov, N.; Holclajtner-Antunovic, I. In situ synthesis of potassium tungstophosphate supported on BEA zeolite and perspective application for pesticide removal. J. Environ. Sci. 2019, 81, 136–147. [Google Scholar] [CrossRef]
- Milojevic-Rakic, M.; Janosevic, A.; Krstic, J.; Vasiljevic, B.N.; Dondur, V.; Ciric-Marjanovic, G. Polyaniline and its composites with zeolite ZSM-5 for efficient removal of glyphosate from aqueous solution. Microporous Mesoporous Mater. 2013, 180, 141–155. [Google Scholar] [CrossRef]
- Zavareh, S.; Farrokhzad, Z.; Darvishi, F. Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water. Ecotoxicol. Environ. Saf. 2018, 155, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, X.; Zhou, H.; Zhou, X.; Xu, H. Synthesis, Characterization of Metal-Schiff Base Functionalized Mesoporous Silica for Pesticide Adsorption. Mater. Sci. 2019, 25, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Rongchapo, W.; Deekamwong, K.; Loiha, S.; Prayoonpokarach, S.; Wittayakun, J. Paraquat adsorption on NaX and Al-MCM-41. Water Sci. Technol. 2015, 71, 1347–1353. [Google Scholar] [CrossRef]
- Rongchapo, W.; Sophiphun, O.; Rintramee, K.; Prayoonpokarach, S.; Wittayakun, J. Paraquat adsorption on porous materials synthesized from rice husk silica. Water Sci. Technol. 2013, 68, 863–869. [Google Scholar] [CrossRef]
- Brigante, M.; Avena, M. Synthesis, characterization and application of a hexagonal mesoporous silica for pesticide removal from aqueous solution. Microporous Mesoporous Mater. 2014, 191, 1–9. [Google Scholar] [CrossRef]
- Insuwan, W.; Rangsriwatananon, K. Removal of Paraquat from Aqueous Solutions onto Zeolite LTL. Eng. J. Thail. 2017, 21, 15–23. [Google Scholar] [CrossRef]
- Trouve, A.; Batonneau-Gener, I.; Valange, S.; Bonne, M.; Mignard, S. Tuning the hydrophobicity of mesoporous silica materials for the adsorption of organic pollutant in aqueous solution. J. Hazard. Mater. 2012, 201, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Bruzzoniti, M.C.; De Carlo, R.M.; Rivoira, L.; Del Bubba, M.; Pavani, M.; Riatti, M.; Onida, B. Adsorption of bentazone herbicide onto mesoporous silica: Application to environmental water purification. Environ. Sci. Pollut. Res. 2016, 23, 5399–5409. [Google Scholar] [CrossRef]
- De Smedt, C.; Ferrer, F.; Leus, K.; Spanoghe, P. Removal of pesticides from aqueous solutions by adsorption on zeolites as solid adsorbents. Adsorpt. Sci. Technol. 2015, 33, 457–485. [Google Scholar] [CrossRef] [Green Version]
- Yonli, A.H.; Batonneau-Gener, I.; Koulidiati, J. Adsorptive removal of alpha-endosulfan from water by hydrophobic zeolites. An isothermal study. J. Hazard. Mater. 2012, 203, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Rathi, A.; Basu, S.; Barman, S. Adsorptive removal of fipronil from its aqueous solution by modified zeolite HZSM-5: Equilibrium, kinetic and thermodynamic study. J. Mol. Liq. 2019, 283, 867–878. [Google Scholar] [CrossRef]
- Sannino, F.; Ruocco, S.; Marocco, A.; Esposito, S.; Pansini, M. Cyclic process of simazine removal from waters by adsorption on zeolite H-Y and its regeneration by thermal treatment. J. Hazard. Mater. 2012, 229, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Sannino, F.; Marocco, A.; Garrone, E.; Esposito, S.; Pansini, M. Adsorption of simazine on zeolite H-Y and sol–gel technique manufactured porous silica: A comparative study in model and natural waters. J. Environ. Sci. Health—Part B Pestic. Food Contam. Agric. Wastes 2015, 50, 777–787. [Google Scholar] [CrossRef]
- Esposito, S.; Garrone, E.; Marocco, A.; Pansini, M.; Martinelli, P.; Sannino, F. Application of highly porous materials for simazine removal from aqueous solutions. Environ. Technol. 2016, 37, 2428–2434. [Google Scholar] [CrossRef]
- Bottero, J.Y.; Khatib, K.; Thomas, F.; Jucker, K.; Bersillon, J.L.; Mallevialle, J. Adsorption of atrazine onto zeolites and organoclays, in the presence of background organics. Water Res. 1994, 28, 483–490. [Google Scholar] [CrossRef]
- Sirival, N. The difference of Si/Al ratio on organo-zeolite in the adsorption of atrazine and linuron. Appl. Mech. Mater. 2015, 804, 295–298. [Google Scholar] [CrossRef]
- Jamil, T.S.; Gad-Allah, T.A.; Ibrahim, H.S.; Saleh, T.S. Adsorption and isothermal models of atrazine by zeolite prepared from Egyptian kaolin. Solid State Sci. 2011, 13, 198–203. [Google Scholar] [CrossRef]
- Janicijevic, D.; Uskokovic-Markovic, S.; Rankovic, D.; Milenkovic, M.; Jevremovic, A.; Nedic Vasiljevic, B.; Milojevic-Rakic, M.; Bajuk-Bogdanovic, D. Double active BEA zeolite/silver tungstophosphates—Antimicrobial effects and pesticide removal. Sci. Total Environ. 2020, 735, 139530. [Google Scholar] [CrossRef] [PubMed]
- Bajuk-Bogdanovic, D.; Jovic, A.; Vasiljevic, B.N.; Milojevic-Rakic, M.; Kragovic, M.; Krajisnik, D.; Holclajtner-Antunovic, I.; Dondur, V. 12-Tungstophosphoric acid/BEA zeolite composites—Characterization and application for pesticide removal. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2017, 225, 60–67. [Google Scholar] [CrossRef]
- Jevremovic, A.; Bober, P.; Micusik, M.; Kulicek, J.; Acharya, U.; Pfleger, J.; Milojevic-Rakic, M.; Krajisnik, D.; Trchova, M.; Stejskal, J.; et al. Synthesis and characterization of polyaniline/BEA zeolite composites and their application in nicosulfuron adsorption. Microporous Mesoporous Mater. 2019, 287, 234–245. [Google Scholar] [CrossRef]
- Jevremović, A.; Nedić Vasiljević, B.; Popa, A.; Uskoković-Marković, S.; Ignjatović, L.; Bajuk-Bogdanović, D.; Milojević-Rakić, M. The environmental impact of potassium tungstophosphate/ZSM-5 zeolite: Insight into catalysis and adsorption processes. Microporous Mesoporous Mater. 2021, 315, 110925. [Google Scholar] [CrossRef]
- Huq, R.; Mercier, L.; Kooyman, P.J. Incorporation of cyclodextrin into mesostructured silica. Chem. Mater. 2001, 13, 4512–4519. [Google Scholar] [CrossRef]
- Rekharsky, M.V.; Inoue, Y. Complexation thermodynamics of cyclodextrins. Chem. Rev. 1998, 98, 1875–1917. [Google Scholar] [CrossRef] [PubMed]
- Mangrulkar, P.A.; Kamble, S.P.; Meshram, J.; Rayalu, S.S. Adsorption of phenol and o-chlorophenol by mesoporous MCM-41. J. Hazard. Mater. 2008, 160, 414–421. [Google Scholar] [CrossRef]
- Li, R.J.; Wen, B.; Zhang, S.Z.; Pei, Z.G.; Shan, X.Q. Influence of organic amendments on the sorption of pentachlorophenol on soils. J. Environ. Sci. 2009, 21, 474–480. [Google Scholar] [CrossRef]
- Khelifa, A.; Derriche, Z.; Bengueddach, A. Adsorption of propene on NaX zeolite exchanged with Zn2+ and Cu2+. Appl. Catal. A Gen. 1999, 178, 61–68. [Google Scholar] [CrossRef]
- Li, S.H.; Sun, X.D.; Wang, Y.Z.; Shi, C.L.; Gu, W.B.; Wang, W.M.; Yao, H.M.; Wang, Y.; Zhu, J.H. Novel mesoporous composite with zeolite-like selectivity to capture tobacco specific nitrosamine NNK. Chem. Eng. J. 2018, 332, 331–339. [Google Scholar] [CrossRef]
- Braga, P.R.S.; Costa, A.A.; de Macedo, J.L.; Ghesti, G.F.; de Souza, M.P.; Dias, J.A.; Dias, S.C.L. Liquid phase calorimetric-adsorption analysis of Si-MCM-41: Evidence of strong hydrogen-bonding sites. Microporous Mesoporous Mater. 2011, 139, 74–80. [Google Scholar] [CrossRef]
- Sheals, J.; Sjoberg, S.; Persson, P. Adsorption of glyphosate on goethite: Molecular characterization of surface complexes. Environ. Sci. Technol. 2002, 36, 3090–3095. [Google Scholar] [CrossRef] [PubMed]
- Grunberg, B.; Emmler, T.; Gedat, E.; Shenderovich, I.; Findenegg, G.H.; Limbach, H.H.; Buntkowsky, G. Hydrogen bonding of water confined in mesoporous silica MCM-41 and SBA-15 studied by H-1 solid-state NMR. Chem. Eur. J. 2004, 10, 5689–5696. [Google Scholar] [CrossRef]
- Brigante, M.; Schulz, P.C. Adsorption of paraquat on mesoporous silica modified with titania: Effects of pH, ionic strength and temperature. J. Colloid Interface Sci. 2011, 363, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.C.; Deka, J.R.; Wu, H.Y.; Shieh, F.K.; Huang, S.Y.; Kao, H.M. Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents. Appl. Catal. B-Environ. 2013, 142, 817–827. [Google Scholar] [CrossRef]
- Shi, C.L.; Chen, J.L.; Gao, Y.H.; Wang, Y.Z.; Sun, X.D.; Qi, D.W.; Zheng, S.J.; Shen, Y.; Wang, Y.; Zhu, J.H. Insight into the efficient TSNA capturer derived from zeolite H beta. Chem. Eng. J. 2019, 369, 480–488. [Google Scholar] [CrossRef]
- De Wilde, T.; Spanoghe, P.; Ryckeboer, J.; Jaeken, P.; Springael, D. Sorption characteristics of pesticides on matrix substrates used in biopurification systems. Chemosphere 2009, 75, 100–108. [Google Scholar] [CrossRef]
- Aksu, Z. Application of biosorption for the removal of organic pollutants: A review. Process Biochem. 2005, 40, 997–1026. [Google Scholar] [CrossRef]
- Renganathan, S.; Kalpana, J.; Kumar, M.D.; Velan, M. Equilibrium and kinetic studies on the removal of Reactive Red 2 dye from an aqueous solution using a positively charged functional group of the Nymphaea rubra biosorbent. Clean Soil Air Water 2009, 37, 901–907. [Google Scholar] [CrossRef]
- Senturk, H.B.; Ozdes, D.; Duran, C. Biosorption of Rhodamine 6G from aqueous solutions onto almond shell (Prunus dulcis) as a low cost biosorbent. Desalination 2010, 252, 81–87. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Jeppu, G.P.; Clement, T.P. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J. Contam. Hydrol. 2012, 129, 46–53. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Zhang, J.Z. Avoiding spurious correlation in analysis of chemical kinetic data. Chem. Commun. 2011, 47, 6861–6863. [Google Scholar] [CrossRef]
- Bullen, J.; Saleesongsom, S.; Weiss, D.J. A revised pseudo-second order kinetic model for adsorption, sensitive to changes in sorbate and sorbent concentrations. Langmuir 2021, 37, 3189–3201. [Google Scholar] [CrossRef] [PubMed]
- Simonin, J.P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.V. Comments on “Adsorption of acid dye onto organobentonite”. J. Hazard. Mater. 2006, 137, 638–639. [Google Scholar] [CrossRef]
- Lima, É.C.; Adebayo, M.A.; Machado, F.M. Kinetic and equilibrium models of adsorption. In Carbon Nanostructures; Springer International Publishing: Gewerbestrasse, Switzerland, 2015; Volume 1, pp. 33–69. [Google Scholar]
- Lima, E.C.; Cestari, A.R.; Adebayo, M.A. Comments on the paper: A critical review of the applicability of Avrami fractional kinetic equation in adsorption-based water treatment studies. Desalin. Water Treat. 2016, 57, 19566–19571. [Google Scholar] [CrossRef]
- Volesky, B. Biosorption and me. Water Res. 2007, 41, 4017–4029. [Google Scholar] [CrossRef]
- Landmesser, H. Interior surface hydroxyl groups in ordered mesoporous silicates. Solid State Ion. 1997, 101–103, 271–277. [Google Scholar] [CrossRef]
- Breck, D.W. Zeolite Molecular Sieves—Structure, Chemistry, and Use; John Wiley & Sons: Hoboken, NJ, USA, 1974; ISBN 0-471-09985-6. [Google Scholar]
- Mojiri, A.; Zhou, J.L.; Robinson, B.; Ohashi, A.; Ozaki, N.; Kindaichi, T.; Farraji, H.; Vakili, M. Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere 2020, 253, 126646. [Google Scholar] [CrossRef]
- Kim, J.M.; Jun, S.; Ryoo, R. Improvement of hydrothermal stability of mesoporous silica using salts: Reinvestigation for time-dependent effects. J. Phys. Chem. B 1999, 103, 6200–6205. [Google Scholar] [CrossRef]
- Celer, E.B.; Kruk, M.; Zuzek, Y.; Jaroniec, M. Hydrothermal stability of SBA-15 and related ordered mesoporous silicas with plugged pores. J. Mater. Chem. 2006, 16, 2824–2833. [Google Scholar] [CrossRef]
- Zhang, F.; Yan, Y.; Yang, H.; Meng, Y.; Yu, C.; Tu, B.; Zhao, D. Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15. J. Phys. Chem. B 2005, 109. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, N.; Koyano, K.A.; Tanaka, Y.; Nakata, S.; Hashimoto, K.; Tatsumi, T. Investigation of the factors influencing the structural stability of mesoporous silica molecular sieves. Microporous Mesoporous Mater. 2003, 59, 43–52. [Google Scholar] [CrossRef]
- Blin, J.L.; Riachy, P.; Carteret, C.; Lebeau, B. Thermal and Hydrothermal Stability of Hierarchical Porous Silica Materials. Eur. J. Inorg. Chem. 2019, 2019, 3194–3202. [Google Scholar] [CrossRef]
Pesticide | Mode of Action | Environmental Impact | Examples | References |
---|---|---|---|---|
Organochlorine | act as nervous system disruptors which leads to convulsions, paralysis, and death | long-term residual effect in the environment, resistant to most degradation processes | DDT (1,1,1-trichloro-2,2′bis(p-chlorophenyl)ethane), lindane, endosulfan | [9,18,22] |
Organophosphorus | act as cholinesterase inhibitors causing a permanent overlay of acetylcholine neurotransmitters across a synapse which leads to paralysis and death | not persistent in the environment, susceptible to biodegradation | parathion, malathion, diazinon | [9,18,23] |
Carbamates | act as cholinesterase inhibitors; mechanism of cholinesterase inhibition is species-specific and reversible | not persistent in the environment, susceptible to biodegradation | carbaryl, carbofuran, propoxur | [18,24] |
Pyrethrins (natural) Pyrethroids (synthetic) | act by disrupting an insect’s nervous system which leads to a weakened state followed by death | not persistent in the environment, susceptible to biodegradation | permethrin, cypermethrin, deltamethrin | [18,25] |
Pesticide | Adsorbent Type | Article Section | References |
---|---|---|---|
Pentachlorophenol | Mesoporous silica material | 3.1.1 | [51,97] |
DDT | Mesoporous silica material | 3.1.1 | [98,99,100,101] |
DDE | Mesoporous silica material | 3.1.1 | [98,99] |
DDD | Mesoporous silica material | 3.1.1 | [98,99] |
Heptachlor | Mesoporous silica material | 3.1.1 | [98] |
Endosulfan | Mesoporous silica material | 3.1.1 | [98] |
Aldrin | Mesoporous silica material | 3.1.1 | [98] |
Dieldrin | Mesoporous silica material | 3.1.1 | [98] |
Methoxychlor | Mesoporous silica material | 3.1.1 | [98] |
Diazinon | Mesoporous silica material | 3.1.2 | [102,103] |
Fenitrothion | Mesoporous silica material | 3.1.2 | [103] |
Acephate | Mesoporous silica material | 3.1.2 | [104] |
Zeolite | 3.2.1 | ||
Folimat | Mesoporous silica material | 3.1.2 | [104] |
Zeolite | 3.2.1 | ||
Phoxim | Mesoporous silica material | 3.1.2 | [104] |
Zeolite | 3.2.1 | ||
Chlorpyrifos | Mesoporous silica material | 3.1.2 | [104] |
Zeolite | 3.2.1 | ||
Dipterex | Mesoporous silica material | 3.1.2 | [104] |
Zeolite | 3.2.1 | ||
2,4-D | Mesoporous silica material | 3.1.3 | [52,105] |
Zeolite | 3.2.2 | [106] | |
Carbendazim | Mesoporous silica material | 3.1.3 | [104] |
Zeolite | 3.2.2 | ||
Imidacloprid | Mesoporous silica material | 3.1.3 | [104] |
Zeolite | 3.2.2 | ||
Mesosulfuron-methyl | Mesoporous silica material | 3.1.3 | [107] |
Zeolite | 3.2.2.1 | [108] | |
Glyphosate | Mesoporous silica material | 3.1.3 | [109] |
Zeolite | 3.2.2.2 | [110,111,112] | |
Avermectin | Mesoporous silica material | 3.1.3 | [113] |
Paraquat | Mesoporous silica material | 3.1.3 | [114,115,116] |
Zeolite | 3.2.2 | [106,114,115,117] | |
DEET | Mesoporous silica material | 3.1.3 | [118] |
Bentazone | Mesoporous silica material | 3.1.3 | [119] |
Zeolite | 3.2.2 | [120] | |
α-endosulfan | Zeolite | 3.2.1 | [121] |
Fipronil | Zeolite | 3.2.2 | [122] |
Clopyralid | Zeolite | 3.2.2 | [120] |
Imidacloprid | Zeolite | 3.2.2 | [120] |
Metalaxyl-m | Zeolite | 3.2.2 | [120] |
Isoproturon | Zeolite | 3.2.2.1 | [120] |
Simazine | Zeolite | 3.2.2.1 | [123,124,125] |
Atrazine | Zeolite | 3.2.2.1 | [126,127,128] |
Linuron | Zeolite | 3.2.2.1 | [127] |
Nicosulfuron | Zeolite | 3.2.2.1 | [129,130,131,132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrunik, M.; Bajda, T. Removal of Pesticides from Waters by Adsorption: Comparison between Synthetic Zeolites and Mesoporous Silica Materials. A Review. Materials 2021, 14, 3532. https://doi.org/10.3390/ma14133532
Andrunik M, Bajda T. Removal of Pesticides from Waters by Adsorption: Comparison between Synthetic Zeolites and Mesoporous Silica Materials. A Review. Materials. 2021; 14(13):3532. https://doi.org/10.3390/ma14133532
Chicago/Turabian StyleAndrunik, Magdalena, and Tomasz Bajda. 2021. "Removal of Pesticides from Waters by Adsorption: Comparison between Synthetic Zeolites and Mesoporous Silica Materials. A Review" Materials 14, no. 13: 3532. https://doi.org/10.3390/ma14133532
APA StyleAndrunik, M., & Bajda, T. (2021). Removal of Pesticides from Waters by Adsorption: Comparison between Synthetic Zeolites and Mesoporous Silica Materials. A Review. Materials, 14(13), 3532. https://doi.org/10.3390/ma14133532