In Vitro Investigations in a Biomimetic Approach to Restore One-Piece Zirconia Implants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implant Preparation
2.2. Production of the Restorations
2.3. Cementation of the Restorations
2.4. Artificial Aging
2.5. Testing
2.5.1. Retention Force
2.5.2. Fracture Load
2.6. Compressive Strength of the Cement Materials
2.7. Statistical Analysis
3. Results
3.1. Retention Force
3.2. Fracture Load
3.3. Compressive Strength of Cements
4. Discussion
5. Conclusions
- Retention of polymer-infiltrated restorations on zirconia implants may be increased by the application of methyl methacrylate in combination with MDP.
- Retention of polymer-infiltrated restorations on zirconia implants is not affected by aging when methyl methacrylate is used in combination with MDP.
- Fracture load of restorations consisting of a polymer-infiltrated ceramic mesostructure and a feldspathic ceramic suprastructure is significantly reduced by aging, independent of the primers and cements used.
- Further material combinations for meso- and suprastructure have to be investigated prior to a clinical study.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Groups | 1 Aged | 2 Initial | 2 Aged | 4 Initial | 4 Aged |
---|---|---|---|---|---|
1 initial | 0.362 | 0.263 | 0.019 | <0.001 | <0.001 |
1 aged | 0.833 | 0.142 | <0.001 | <0.001 | |
2 initial | 0.206 | <0.001 | <0.001 | ||
2 aged | <0.001 | <0.001 | |||
4 inital | <0.001 |
Groups | 1 Aged | 2 Initial | 2 Aged | 3 Initial | 3 Aged | 4 Initial | 4 Aged |
---|---|---|---|---|---|---|---|
1 initial | <0.001 | 0.003 | <0.001 | <0.001 | <0.001 | 0.002 | <0.001 |
1 aged | 0.234 | 0.009 | 0.655 | 0.166 | 0.278 | 0.183 | |
2 initial | <0.001 | 0.454 | 0.011 | 0.913 | 0.013 | ||
2 aged | <0.001 | 0.066 | <0.001 | 0.059 | |||
3 inital | 0.069 | 0.521 | 0.077 | ||||
3 aged | 0.015 | 0.955 | |||||
4 inital | 0.017 |
References
- Roehling, S.K.; Meng, B.; Cochran, D.L. Sandblasted and Acid-Etched Implant Surfaces With or Without High Surface Free Energy: Experimental and Clinical Background. In Implant Surfaces and their Biological and Clinical Impact; Wennerberg, A., Albrektsson, T., Jimbo, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 93–136. ISBN 978-3-662-45378-0. [Google Scholar]
- Balmer, M.; Spies, B.C.; Kohal, R.; Hämmerle, C.H.; Vach, K.; Jung, R.E. Zirconia Implants Restored with Single Crowns or Fixed Dental Prostheses: 5-year Results of a Prospective Cohort Investigation. Clin. Oral Implants Res. 2020, 31, 452–462. [Google Scholar] [CrossRef]
- Bormann, K.-H.; Gellrich, N.-C.; Kniha, H.; Schild, S.; Weingart, D.; Gahlert, M. A Prospective Clinical Study to Evaluate the Performance of Zirconium Dioxide Dental Implants in Single-Tooth Edentulous Area: 3-Year Follow-Up. BMC Oral Health 2018, 18, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohal, R.-J.; Spies, B.C.; Vach, K.; Balmer, M.; Pieralli, S. A Prospective Clinical Cohort Investigation on Zirconia Implants: 5-Year Results. J. Clin. Med. 2020, 9, 2585. [Google Scholar] [CrossRef]
- Wenz, H.J.; Bartsch, J.; Wolfart, S.; Kern, M. Osseointegration and Clinical Success of Zirconia Dental Implants: A Systematic Review. Int. J. Prosthodont. 2008, 21, 27–36. [Google Scholar] [PubMed]
- Andreiotelli, M.; Wenz, H.J.; Kohal, R.-J. Are Ceramic Implants a Viable Alternative to Titanium Implants? A Systematic Literature Review. Clin. Oral Implants Res. 2009, 20, 32–47. [Google Scholar] [CrossRef]
- Ozkurt, Z.; Kazazoğlu, E. Clinical Success of Zirconia in Dental Applications. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2010, 19, 64–68. [Google Scholar] [CrossRef]
- Pieralli, S.; Kohal, R.J.; Jung, R.E.; Vach, K.; Spies, B.C. Clinical Outcomes of Zirconia Dental Implants: A Systematic Review. J. Dent. Res. 2017, 96, 38–46. [Google Scholar] [CrossRef]
- Roehling, S.; Schlegel, K.A.; Woelfler, H.; Gahlert, M. Performance and Outcome of Zirconia Dental Implants in Clinical Studies: A Meta-analysis. Clin. Oral Implants Res. 2018, 29, 135–153. [Google Scholar] [CrossRef]
- Borges, H.; Correia, A.; Castilho, R.; Fernandes, G. Zirconia Implants and Marginal Bone Loss: A Systematic Review and Meta-Analysis of Clinical Studies. Int. J. Oral Maxillofac. Implants 2020, 35, 707–720. [Google Scholar] [CrossRef]
- Spies, B.C.; Stampf, S.; Kohal, R.-J. Evaluation of Zirconia-Based All-Ceramic Single Crowns and Fixed Dental Prosthesis on Zirconia Implants: 5-Year Results of a Prospective Cohort Study: All-Ceramic Reconstructions on Zirconia Implants. Clin. Implant Dent. Relat. Res. 2015, 17, 1014–1028. [Google Scholar] [CrossRef]
- Spies, B.C.; Kohal, R.-J.; Balmer, M.; Vach, K.; Jung, R.E. Evaluation of Zirconia-Based Posterior Single Crowns Supported by Zirconia Implants: Preliminary Results of a Prospective Multicenter Study. Clin. Oral Implants Res. 2017, 28, 613–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spies, B.C.; Balmer, M.; Jung, R.E.; Sailer, I.; Vach, K.; Kohal, R.-J. All-Ceramic, Bi-Layered Crowns Supported by Zirconia Implants: Three-Year Results of a Prospective Multicenter Study. J. Dent. 2017, 67, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spies, B.C.; Pieralli, S.; Vach, K.; Kohal, R.-J. CAD/CAM-Fabricated Ceramic Implant-Supported Single Crowns Made from Lithium Disilicate: Final Results of a 5-Year Prospective Cohort Study. Clin. Implant Dent. Relat. Res. 2017, 19, 876–883. [Google Scholar] [CrossRef]
- Zaugg, L.K.; Meyer, S.; Rohr, N.; Zehnder, I.; Zitzmann, N.U. Fracture Behavior, Marginal Gap Width, and Marginal Quality of Vented or Pre-Cemented CAD/CAM All-Ceramic Crowns Luted on Y-TZP Implants. Clin. Oral Implants Res. 2018, 29, 175–184. [Google Scholar] [CrossRef]
- Rohr, N.; Märtin, S.; Fischer, J. Correlations between Fracture Load of Zirconia Implant Supported Single Crowns and Mechanical Properties of Restorative Material and Cement. Dent. Mater. J. 2018, 37, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Rohr, N.; Coldea, A.; Zitzmann, N.U.; Fischer, J. Loading Capacity of Zirconia Implant Supported Hybrid Ceramic Crowns. Dent. Mater. 2015, 31, e279–e288. [Google Scholar] [CrossRef]
- Rohr, N.; Balmer, M.; Müller, J.A.; Märtin, S.; Fischer, J. Chewing Simulation of Zirconia Implant Supported Restorations. J. Prosthodont. Res. 2019, 63, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Nueesch, R.; Conejo, J.; Mante, F.; Fischer, J.; Märtin, S.; Rohr, N.; Blatz, M.B. Loading Capacity of CAD/CAM-Fabricated Anterior Feldspathic Ceramic Crowns Bonded to One-Piece Zirconia Implants with Different Cements. Clin. Oral Implants Res. 2019, 30, 178–186. [Google Scholar] [CrossRef]
- Rohr, N.; Märtin, S.; Fischer, J. Fracture Load of Zirconia Implant Supported CAD/CAM Resin Crowns and Mechanical Properties of Restorative Material and Cement. J. Prosthodont. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Linkevicius, T.; Vindasiute, E.; Puisys, A.; Peciuliene, V. The Influence of Margin Location on the Amount of Undetected Cement Excess after Delivery of Cement-Retained Implant Restorations: Cement Excess around Subgingival Margins. Clin. Oral Implants Res. 2011, 22, 1379–1384. [Google Scholar] [CrossRef]
- Vindasiute, E.; Puisys, A.; Maslova, N.; Linkeviciene, L.; Peciuliene, V.; Linkevicius, T. Clinical Factors Influencing Removal of the Cement Excess in Implant-Supported Restorations: Clinical Factors Influencing Cement Removal. Clin. Implant Dent. Relat. Res. 2015, 17, 771–778. [Google Scholar] [CrossRef]
- Agar, J.R.; Cameron, S.M.; Hughbanks, J.C.; Parker, M.H. Cement Removal from Restorations Luted to Titanium Abutments with Simulated Subgingival Margins. J. Prosthet. Dent. 1997, 78, 43–47. [Google Scholar] [CrossRef]
- Wilson, T.G. The Positive Relationship between Excess Cement and Peri-Implant Disease: A Prospective Clinical Endoscopic Study. J. Periodontol. 2009, 80, 1388–1392. [Google Scholar] [CrossRef]
- Linkevicius, T.; Puisys, A.; Vindasiute, E.; Linkeviciene, L.; Apse, P. Does Residual Cement around Implant-Supported Restorations Cause Peri-Implant Disease? A Retrospective Case Analysis. Clin. Oral Implants Res. 2012, 24, 1179–1184. [Google Scholar] [CrossRef]
- Zaugg, L.K.; Zehnder, I.; Rohr, N.; Fischer, J.; Zitzmann, N.U. The Effects of Crown Venting or Pre-Cementing of CAD/CAM-Constructed All-Ceramic Crowns Luted on YTZ Implants on Marginal Cement Excess. Clin. Oral Implants Res. 2018, 29, 82–90. [Google Scholar] [CrossRef]
- Coldea, A.; Fischer, J.; Swain, M.V.; Thiel, N. Damage Tolerance of Indirect Restorative Materials (Including PICN) after Simulated Bur Adjustments. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2015, 31, 684–694. [Google Scholar] [CrossRef]
- Blatz, M.B.; Sadan, A.; Kern, M. Resin-Ceramic Bonding: A Review of the Literature. J. Prosthet. Dent. 2003, 89, 268–274. [Google Scholar] [CrossRef] [Green Version]
- de Souza, G.; Hennig, D.; Aggarwal, A.; Tam, L.E. The Use of MDP-Based Materials for Bonding to Zirconia. J. Prosthet. Dent. 2014, 112, 895–902. [Google Scholar] [CrossRef]
- Mine, A.; Kabetani, T.; Kawaguchi-Uemura, A.; Higashi, M.; Tajiri, Y.; Hagino, R.; Imai, D.; Yumitate, M.; Ban, S.; Matsumoto, M.; et al. Effectiveness of Current Adhesive Systems When Bonding to CAD/CAM Indirect Resin Materials: A Review of 32 Publications. Jpn. Dent. Sci. Rev. 2019, 55, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-R.; Du, W.; Zhou, X.-D.; Yu, H.-Y. Review of Research on the Mechanical Properties of the Human Tooth. Int. J. Oral Sci. 2014, 6, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Blatz, M.B.; Alvarez, M.; Sawyer, K.; Brindis, M. How to Bond Zirconia: The APC Concept. Compend. Contin. Educ. Dent. 2016, 37, 611–617; quiz 618. [Google Scholar] [PubMed]
- Thomas, T.C.; Aswini Kumar, K.; Mohamed, S.; Krishnan, V.; Mathew, A.; Manju, V. The Effect on the Flexural Strength, Flexural Modulus and Compressive Strength of Fibre Reinforced Acrylic with That of Plain Unfilled Acrylic Resin—An in Vitro Study. J. Clin. Diagn. Res. 2015, 9, ZC12. [Google Scholar] [CrossRef] [PubMed]
Name | Code | Composition |
---|---|---|
VITA Adiva Etch | etchant | Hydrofluoric acid 5% |
VITA Adiva C-Prime | VACP | Silanated methacrylate, Ethanol |
VITA Adiva ZR-Prime | VAZP | Adhesive monomers, acetone |
VITA Adiva F-Cem | VAF | Mixture of bis-GMA-based resins, Catalysts, Stabilizers, and Pigments |
VITA Exp. Primer | VEPR | Experimental primer with MDP |
VITA Exp. RCC | VER | Experimental resin composite cement |
VITA Vionic Bond | VVB | Methyl methacrylate, 2,2’-ethylenedioxydiethyl dimethacrylate, dibenzoyl peroxide, benzoyl peroxide |
Groups | Initial (N) | Aged (N) |
---|---|---|
Group 1 | 132.9 ± 14.1 A,a | 107.3 ± 14.2 A,a |
Group 2 | 101.4 ± 22.2 A,a | 65.7 ± 17.1 A,a |
Group 3 | - | - |
Group 4 | 319.0 ± 61.8 A,b | 430.9 ± 105.6 B,b |
monolithic feldspathic restoration | - | - |
monolithic PICN restoration | - | - |
Groups | Initial (N) | Aged (N) |
---|---|---|
Group 1 | 1469.8 ± 224.5 A,a | 1035.5 ± 216.0 B,a |
Group 2 | 1159.6 ± 151.1 A,b,c | 698.4 ± 202.5 B,b |
Group 3 | 1081.8 ± 256.0 A,b,c | 890.9 ± 244.6 A,a,b |
Group 4 | 1148.3 ± 269.5 A,b,c | 896.7 ± 105.5 B,a,b |
monolithic feldspathic restoration | 951.4 ± 172.2 b | - |
monolithic PICN restoration | 1186.6 ± 247.7 c | - |
Material | Compressive Strength (MPa) |
---|---|
VAF | 325.1 ± 45.6 |
VER | 286.6 ± 50.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nueesch, R.; Märtin, S.; Rohr, N.; Fischer, J. In Vitro Investigations in a Biomimetic Approach to Restore One-Piece Zirconia Implants. Materials 2021, 14, 4361. https://doi.org/10.3390/ma14164361
Nueesch R, Märtin S, Rohr N, Fischer J. In Vitro Investigations in a Biomimetic Approach to Restore One-Piece Zirconia Implants. Materials. 2021; 14(16):4361. https://doi.org/10.3390/ma14164361
Chicago/Turabian StyleNueesch, Reto, Sabrina Märtin, Nadja Rohr, and Jens Fischer. 2021. "In Vitro Investigations in a Biomimetic Approach to Restore One-Piece Zirconia Implants" Materials 14, no. 16: 4361. https://doi.org/10.3390/ma14164361
APA StyleNueesch, R., Märtin, S., Rohr, N., & Fischer, J. (2021). In Vitro Investigations in a Biomimetic Approach to Restore One-Piece Zirconia Implants. Materials, 14(16), 4361. https://doi.org/10.3390/ma14164361