Predicting Compression Pressure of Knitted Fabric Using a Modified Laplace’s Law
Abstract
:1. Background
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Interface Pressure Evaluation
2.2.2. Effects of Washing on Pressure
2.2.3. Fabric Elasticity and Flexural Modulus
2.2.4. Theoretical Method for Prediction of Compression
3. Results and Discussion
3.1. Interface Pressure Evaluation
3.2. Effects of Washing on Pressure
3.3. Fabric Elasticity
3.4. Theoretical Method for Prediction of Compression
3.4.1. Interface Pressure Model
3.4.2. Influence of Fabric Mechanical Properties on Interface Pressure
3.5. Measurements and Comparison of the Pressure with Prediction Values
3.6. The Influence of Extension and Young’s Modulus on Interface Pressure
3.7. Influence of Fabric Thickness on Interface Pressure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, C.S.; Davies, A.H. Graduated compression stockings Review. Can. Med. Assoc. J. 2014, 186, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Mikučionienė, D.; Milašiūtė, L. Influence of knitted orthopaedic support construction on compression generated by the support. J. Ind. Text. 2017, 47, 1–16. [Google Scholar] [CrossRef]
- Partsch, H. Compression Therapy: Clinical and Experimental Evidence. Ann. Vasc. Dis. 2012, 5, 416–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffield, R.; Cannon, J.; King, M. The effects of compression garments on recovery of muscle performance following high-intensity sprint and plyometric exercise. J. Sci. Med. Sport 2010, 13, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Struh, I.; Kumst, M.; Kr, D.M. Effect of Compression Garments on Physiological Responses after Uphill Running. J. Hum. Kinet. 2018, 61, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driller, M.W.; Halson, S.L. The effects of lower-body compression garments on recovery between exercise bouts in highly-trained cyclists. J. Sci. Cycl. 2013, 2, 45–50. [Google Scholar]
- Rugg, S.; Sternlicht, E. The effect of graduated compression tights, compared with running shorts, on counter movement jump performance before and after submaximal running. J. Strength Cond. Res. 2013, 27, 1067–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, B.; Das, A.; Alagirusamy, R. Science of Compression Bandage, 1st ed.; Woodhead Publishing India Pvt. Ltd.: New Delhi, India, 2014. [Google Scholar]
- Hirai, M.; Partsch, H. The Mannequin-leg: A new instrument to assess stiffness of compression materials. Veins Lymphat. 2013, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Dascombe, B.J.; Hoare, T.K.; Sear, J.A.; Reaburn, P.R.; Scanlan, A.T. The effects of wearing undersized lower-body compression garments on endurance running performance. Int. J. Sports Physiol. Perform. 2011, 6, 160–173. [Google Scholar] [CrossRef]
- Brophy-williams, N.; Driller, M.W.; Shing, C.M.; Fell, J.W.; Halson, S.L. Confounding compression: The effects of posture, sizing and garment type on measured interface pressure in sports compression clothing. J. Sports Sci. 2015, 13, 37–41. [Google Scholar] [CrossRef]
- Electronica, M. PicoPress Technical Manual Rev 6; Microlab Elettronica SAS: Padua, Italy, 2019; pp. 1–11. [Google Scholar]
- Leung, W.Y.; Yuen, D.W.; Ng, S.P.; Shi, S.-Q. Pressure Prediction Model for Compression Garment Design. J. Burn. Care Res. 2010, 31, 716–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTM D1777:2007. Standard Test Method for Thickness of Textile Materials; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- ISO 9237:1995. ISO 9237:1995(en), Textiles—Determination of the Permeability of Fabrics to Air; International Organization for Standardization: Geneva, Switzerland, 1995; pp. 1–3. [Google Scholar]
- Engel, F.; Sperlich, B. Compression Garments in Sports: Athletic Performance and Recovery; Springer International Publishing: Geneva, Switzerland, 2016. [Google Scholar]
- Chapman, R.A. Smart Textiles for Protection, 1st ed.; Woodhead Publishing Limited: Cambridge, UK, 2013. [Google Scholar]
- BS EN 14704-1:2005. Determination of the Elasticity of Fabrics—Strip Tests. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030148078 (accessed on 15 April 2021).
- EN ISO 139:2005. Textiles-Standard Atmospheres for Conditioning and Testing. Available online: https://www.iso.org/obp/ui/#iso:std:iso:139:ed-2:v1:en (accessed on 15 April 2021).
- Wang, Y.; Liu, Y.; Luo, S.; Liao, Y. Pressure comfort sensation and discrimination on female body below waistline. J. Text. Inst. 2018, 5000, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.-R. Manikins for Evaluation of pressure performance. In Manikins for Textile Evaluation, 1st ed.; Nayak, R., Padhye, R., Eds.; Elsevier Ltd.: Cambridge, UK, 2017; pp. 241–257. [Google Scholar]
- Chattopadhyay, R.; Bera, M. Prediction of Pressure due to Elastic Fabric Tube Following Energy Principle. J. Text. Eng. Fash. Technol. 2017, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yeung, W.; Li, Y. Numerical simulation of 3D dynamic garment pressure. Text. Res. J. 2002, 2, 245–252. [Google Scholar] [CrossRef]
- Yeung, K.W.; Li, Y.; Zhang, X. A 3D biomechanical human model for numerical simulation of garment-body dynamic mechanical interactions during wear. J. Text. Inst. Part 1 Fibre Sci. Text. Technol. 2004, 95, 59–79. [Google Scholar] [CrossRef]
- Chi, Y.; Tseng, K.; Li, R.; Pan, T. Comparison of piezoresistive sensor to PicoPress® in in-vitro interface pressure measurement. Phlebology 2018, 33, 315–320. [Google Scholar] [CrossRef]
- Wiegand, C.; Hansen, T.; Köhnlein, J.; Exner, I.; Damisch-Pohl, M.; Schott, P.; Krühner-Wiesenberger, U.; Hipler, U.-C.; Pohlen, E. Optimized protocol for the biocompatibility testing of compression stockings and similar products with close skin contact in vitro. J. Text. Inst. 2018, 5000, 1–12. [Google Scholar] [CrossRef]
- Rodriguez, C.Q.; Nasir, S.H.; Troynikov, O. Body mapping as a method for design and engineering of functional clothing. In Proceedings of the 10th Textile Bioengineering and Informatics Symposium (TBIS 2017), Wuhan, China, 16–19 May 2017; pp. 364–369. [Google Scholar]
- Gokarneshan, N. Design of Compression/Pressure Garments for Diversified Medical Applications. J. Sci. Tech. Res. 2017, 1, 806–813. [Google Scholar]
- ISO, International Standards Institute. ISO 6330:2012(E). In Textiles—Domestic Washing and Drying Procedures for Textile Testing; ISO, International Standards Institute: Geneva, Switzerland, 2012; pp. 1–3. [Google Scholar]
- Siddique, H.F.; Mazari, A.; Havelka, A.; Kus, Z.; Cirkl, D.; Hes, L. New approach for the prediction of compression pressure using the cut strip method. Text. Res. J. 2020, 90, 1689–1703. [Google Scholar] [CrossRef]
- Xiong, Y.; Tao, X. Compression Garments for Medical Therapy and Sports. J. Polym. 2018, 6, 663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barhoumi, H.; Marzougui, S.; Abdessalem, S.B. Clothing Pressure Modeling Using the Modified Laplace’s Law. Cloth. Text. Res. J. 2020, 38, 134–147. [Google Scholar] [CrossRef]
- Jariyapunya, N.; Musilová, B. Predictive modelling of compression garments for elastic fabric and the effects of pressure sensor thickness. J. Text. Inst. 2019, 110, 1132–1140. [Google Scholar] [CrossRef]
- Troynikov, O.; Ashayeri, E.; Burton, M.; Subic, A.; Alam, F.; Marteau, S. Factors influencing the effectiveness of compression garments used in sports. Procedia Engineering 2010, 2, 2823–2829. [Google Scholar]
- Barhoumi, H.; Abdessalem, S.B.; Marzougui, S. Assessment of the accuracy of Laplace’s law in predicting interface pressure generated by compressive garment used for medical applications. In Proceedings of the 2018 IEEE 4th Middle East Conference on Biomedical Engineering (MECBME), Tunis, Tunisia, 28–30 March 2018. [Google Scholar]
- Aghajani, M.; Jeddi, A.A.A.; Tehran, M.A. Investigating the accuracy of prediction pressure by Laplace law in pressure-garment applications. J. Appl. Polym. Sci. 2011, 121, 2699–2704. [Google Scholar] [CrossRef]
Sample Code | Nylon/Elastane Composition (%) | Fabric Construction | Area Density (g/m2) | Air Permeability (mm/s) | Thickness (mm) | Wales/cm | Courses/cm |
---|---|---|---|---|---|---|---|
LB | 74/26 | Warp knit— Tricot single face | 150 | 394.5 (11.59) | 0.29 (0.008) | 31 | 37 |
DB | 58/42 | Warp knit— Tricot double face | 200 | 74.93 (6.79) | 0.39 (0.00) | 29 | 39 |
TL | 65/35 | Warp knit—Tricot with pillar stitch | 310 | 183.25 (6.94) | 0.55 (0.01) | 22 | 26 |
SW | 75/25 | Warp knit— Tricot (1 × 1) | 247 | 314.0 (27.18) | 0.58 (0.01) | 22 | 38 |
Fabric Name | Pressure Losing Percentage (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Washes 5× | Washes 10× | Washes 15× | |||||||
10% Stretch | 20% Stretch | 30% Stretch | 10% Stretch | 20% Stretch | 30% Stretch | 10% Stretch | 20% Stretch | 30% Stretch | |
Tricot single face (LB) | 0.00 | 3.33 | 1.85 | 10.00 | 10.00 | 2.78 | 20.00 | 10.00 | 3.70 |
Tricot double face (DB) | 0.00 | 1.52 | 0.00 | 6.67 | 3.03 | 0.83 | 6.67 | 6.06 | 1.67 |
Tricot with pillar stitch (TL) | 0.00 | 0.95 | 0.00 | 0.00 | 0.95 | 1.20 | 1.75 | 2.86 | 2.41 |
Tricot (1 × 1) (SW) | 3.60 | 0.00 | 1.33 | 7.21 | 2.70 | 2.00 | 10.81 | 4.05 | 4.00 |
Fabric Code | Measured Pressure PE (1) (mmHg) | (kPa) | Young’s Modulus E (kPa) | Experimental Pressure PE (2) (kPa) | Predicted Pressure P (kPa) | % Error [(|P − PE|) /PE] × 100 | |
---|---|---|---|---|---|---|---|
DB 1 | 3.0 | 0.111 | 55.054 | 495.49 | 0.40 | 0.39 | 2.50 |
DB 2 | 6.6 | 0.249 | 118.047 | 473.90 | 0.88 | 0.84 | 4.89 |
DB 3 | 12.0 | 0.429 | 225.496 | 526.16 | 1.60 | 1.60 | 0.06 |
TL 1 | 5.7 | 0.111 | 77.638 | 698.74 | 0.76 | 0.78 | 2.11 |
TL 2 | 10.5 | 0.249 | 139.112 | 558.46 | 1.40 | 1.39 | 0.64 |
TL 3 | 16.6 | 0.429 | 223.967 | 522.59 | 2.22 | 2.24 | 0.86 |
SW 1 | 2.7 | 0.111 | 35.754 | 321.79 | 0.37 | 0.38 | 1.89 |
SW 2 | 7.4 | 0.249 | 102.405 | 411.11 | 0.99 | 1.08 | 9.42 |
SW 3 | 15.0 | 0.429 | 184.584 | 430.70 | 2.00 | 1.95 | 2.70 |
LB 1 | 2.0 | 0.111 | 46.010 | 414.09 | 0.27 | 0.24 | 9.02 |
LB 2 | 6.0 | 0.249 | 161.954 | 650.16 | 0.80 | 0.85 | 6.74 |
LB 3 | 10.8 | 0.429 | 263.138 | 1.420 | 1.39 | 1.39 | 2.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teyeme, Y.; Malengier, B.; Tesfaye, T.; Vasile, S.; Endalew, W.; Van Langenhove, L. Predicting Compression Pressure of Knitted Fabric Using a Modified Laplace’s Law. Materials 2021, 14, 4461. https://doi.org/10.3390/ma14164461
Teyeme Y, Malengier B, Tesfaye T, Vasile S, Endalew W, Van Langenhove L. Predicting Compression Pressure of Knitted Fabric Using a Modified Laplace’s Law. Materials. 2021; 14(16):4461. https://doi.org/10.3390/ma14164461
Chicago/Turabian StyleTeyeme, Yetanawork, Benny Malengier, Tamrat Tesfaye, Simona Vasile, Wolelaw Endalew, and Lieva Van Langenhove. 2021. "Predicting Compression Pressure of Knitted Fabric Using a Modified Laplace’s Law" Materials 14, no. 16: 4461. https://doi.org/10.3390/ma14164461
APA StyleTeyeme, Y., Malengier, B., Tesfaye, T., Vasile, S., Endalew, W., & Van Langenhove, L. (2021). Predicting Compression Pressure of Knitted Fabric Using a Modified Laplace’s Law. Materials, 14(16), 4461. https://doi.org/10.3390/ma14164461