Structural Diversity of Hydrogen-Bonded 4-Aryl-3,5-Dimethylpyrazoles for Supramolecular Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Techniques
2.2. Synthetic Methods (See Scheme 1)
2.2.1. Synthesis of 3-(4′-Methoxyphenyl)Pentane-2,4-Dione (D1)
2.2.2. Synthesis of 3,5-Dimethyl-4-(4′-Methoxyphenyl)-1H-Pyrazole (P1)
2.2.3. Synthesis of 3-(4′-Nitrophenyl)Pentane-2,4-Dione (D2)
2.2.4. Synthesis of 3,5-Dimethyl-4-(4′-Nitrophenyl)-1H-Pyrazole (P2)
2.2.5. Synthesis of 3,5-Dimethyl-4-(4′-Aminophenyl)-1H-Pyrazole (P3)
2.3. Single-Crystal Preparation and Measurement by X-ray Diffraction
3. Results and Discussion
3.1. Synthesis and Characterization
3.2. Thermal Properties
3.3. Optical Properties
3.4. Single-Crystal Structures and Supramolecular Packing
3.4.1. Intramolecular Parameters
3.4.2. Intermolecular Hydrogen Bonds and Packing
3.4.3. Hirshfeld Surface Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutchins, K.M. Functional materials based on molecules with hydrogen-bonding ability: Applications to drug co-crystals and polymer complexes. R. Soc. Open Sci. 2018, 5, 180564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhang, Q.; Vo, T.T.; Parrish, D.A.; Shreeve, J.N.M. Energetic Salts with π-Stacking and Hydrogen-Bonding Interactions Lead the Way to Future Energetic Materials. J. Am. Chem. Soc. 2015, 137, 1697–1704. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.-B.; He, Y.; Li, P.; Wang, H.; Zhou, W.; Chen, B. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 2019, 48, 1362–1389. [Google Scholar] [CrossRef]
- González-Rodríguez, D.; Schenning, A.P.H.J. Hydrogen-bonded supramolecular π-functional materials. Chem. Mater. 2011, 23, 310–325. [Google Scholar] [CrossRef]
- Kato, T.; Uchida, J.; Ichikawa, T.; Soberats, B. Functional liquid-crystalline polymers and supramolecular liquid crystals. Polym. J. 2018, 50, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Desiraju, G.R. Crystal Engineering: From Molecule to Crystal. J. Am. Chem. Soc. 2013, 135, 9952–9967. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.R. Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis. Angew. Chem. Int. Ed. 1995, 34, 2311–2327. [Google Scholar] [CrossRef]
- Halcrow, M.A. Pyrazoles and pyrazolides-flexible synthons in self-assembly. Dalton Trans. 2009, 12, 2059–2073. [Google Scholar] [CrossRef]
- Perez, J.; Riera, L. Pyrazole Complexes and Supramolecular Chemistry. Eur. J. Inorg. Chem. 2009, 33, 4913–4925. [Google Scholar] [CrossRef]
- Alkorta, I.; Elguero, J.; Foces-Foces, C.; Infantes, L. Classification of hydrogen-bond motives in crystals of NH-pyrazoles: A mixed empirical and theoretical approach. Arkivoc 2006, 2, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Foces-Foces, M.C.; Alkorta, I.; Elguero, J. Supramolecular structure of 1H-pyrazoles in the solid state: A crystallographic and ab initio study. Acta Cryst. 2000, 56, 1018–1028. [Google Scholar] [CrossRef] [Green Version]
- Moyano, S.; Barberá, J.; Diosdado, B.E.; Serrano, J.L.; Elduque, A.; Giménez, R. Self-assembly of 4-aryl-1H-pyrazoles as a novel platform for luminescent supramolecular columnar liquid crystals. J. Mater. Chem. C 2013, 1, 3119–3128. [Google Scholar] [CrossRef]
- Blanco, H.; Iguarbe, V.; Barberá, J.; Serrano, J.L.; Elduque, A.; Giménez, R. Supramolecular Columnar Liquid Crystals with Tapered-Shape Simple Pyrazoles Obtained by Efficient Henry/Michael Reactions. Chem. Eur. J. 2016, 22, 4924–4930. [Google Scholar] [CrossRef] [PubMed]
- Moyano, S.; Serrano, J.L.; Elduque, A.; Giménez, R. Self-assembly and luminescence of pyrazole supergelators. Soft Matter 2012, 8, 6799–6806. [Google Scholar] [CrossRef]
- Mei, J.; Hong, Y.; Lam, J.W.Y.; Qin, A.; Tang, Y.; Tang, B.Z. Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts. Adv. Mater. 2014, 26, 5429–5479. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Lam, J.W.Y.; Tang, B.Z. Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter 2013, 9, 4564–4579. [Google Scholar] [CrossRef] [Green Version]
- Sonoda, Y.; Tsuzuki, S.; Goto, M.; Tohnai, N.; Yoshida, M. Fluorescence Spectroscopic Properties of Nitro-Substituted Diphenylpolyenes: Effects of Intramolecular Planarization and Intermolecular Interactions in Crystals. J. Phys. Chem. A 2010, 114, 172–182. [Google Scholar] [CrossRef]
- Foces-Foces, C.; Cativiela, C.; Serrano, J.L.; Zurbano, M.M.; Jagerovic, N.; Elguero, J. Molecular structure of 4-p-hydroxyphenyl-3,5-dimethylpyrazole monohydrate. J. Chem. Crystallogr. 1996, 26, 127–131. [Google Scholar] [CrossRef]
- Taneja, N.; Peddinti, R.K. Metal-free direct C-arylation of 1,3-dicarbonyl compounds and ethyl cyanoacetate: A platform to access diverse arrays of meta-functionalized phenols. Chem. Commun. 2018, 54, 11423–11426. [Google Scholar] [CrossRef] [Green Version]
- Bryant, M.R.; Burrows, A.D.; Fitchett, C.M.; Hawes, C.S.; Hunter, S.O.; Keenan, L.L.; Kelly, D.J.; Kruger, P.E.; Mahon, M.F.; Richardson, C. The synthesis and characterisation of coordination and hydrogen-bonded networks based on 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoic acid. Dalton Trans. 2015, 44, 9269–9280. [Google Scholar] [CrossRef] [Green Version]
- Grzywa, M.; Bredenkötter, B.; Denysenko, D.; Spirkl, S.; Nitek, W.; Volkmer, D. A Metallosupramolecular Octahedron Assembled from Twelve Copper(I) Metal Ions and Six 4,4′-(1,2-Phenylene)bis(3,5-dimethylpyrazol-1-ide) Ligands. Z. Anorg. Allg. Chem. 2013, 639, 1461–1471. [Google Scholar] [CrossRef]
- Grzywa, M.; Geßner, C.; Bredenkötter, B.; Denysenko, D.; van Leusen, J.; Kögerler, P.; Klemm, E.; Volkmer, D. Coordination frameworks assembled from CuII ions and H2-1,3-bdpb ligands: X-ray and magneto structural investigations, and catalytic activity in the aerobic oxidation of tetralin. Dalton Trans. 2014, 43, 16846–16856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foces-Foces, C.; Cativiela, C.; Zurbano, M.M.; Sobrados, I.; Jagerovic, N.; Elguero, J. Molecular structure of 4-(3,5-dimethylpyrazol-1-yl)benzoic acid trifluoroacetate. J. Chem. Crystallogr. 1996, 26, 579–584. [Google Scholar] [CrossRef]
- Nateghi, B.; Janiak, C. Synthesis and characterization of two bifunctional pyrazole-phosphonic acid ligands. Z. Naturforsch. B 2019, 74, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Reger, D.L.; Gardinier, J.R.; Christian Grattan, T.; Smith, M.R.; Smith, M.D. Synthesis of the silver(i) complex of CH2[CH(pz4Et)2]2 containing the unprecedented [Ag(NO3)4]3− anion: A general method for the preparation of 4-(alkyl)pyrazoles. New J. Chem. 2003, 27, 1670–1677. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
P1·CH3OH | P2 | P3 | |
---|---|---|---|
Chemical formula | C13H18N2O2 | C11H11N3O2 | C11H13N3 |
Formula mass | 234.29 | 217.23 | 187.24 |
Crystal system | Triclinic | Monoclinic | Monoclinic |
a (Å) | 8.0633 (8) | 14.5887 (2) | 21.6136 (2) |
b (Å) | 8.2470 (6) | 19.8458 (2) | 11.73111 (12) |
c (Å) | 19.7880 (18) | 7.24361 (12) | 16.6400 (2) |
α (°) | 80.980 (7) | 90 | 90 |
β (°) | 79.977 (8) | 97.5482 (15) | 107.1683 (13) |
γ (°) | 88.969 (7) | 90 | 90 |
Unit cell volume (Å3) | 1279.7 (2) | 2079.02 (5) | 4031.10 (8) |
Temperature (K) | 150 (1) | 99.97 (11) | 99.98 (10) |
Space group | P¯ī | P21/c | C2/c |
N° of formula units per unit cell, Z | 4 | 8 | 16 |
Radiation type | MoKα | CuKα | CuKα |
Absorption coefficient, μ (mm−1) | 0.083 | 0.818 | 0.603 |
N° of reflections measured | 8328 | 15154 | 15405 |
N° of independent reflections | 4503 | 3876 | 3739 |
Rint | 0.0337 | 0.0285 | 0.0246 |
Final R1 values (I > 2σ(I)) | 0.0572 | 0.0332 | 0.0375 |
Final wR(F2) values (I > 2σ(I)) | 0.1060 | 0.0824 | 0.0993 |
Final R1 values (all data) | 0.0942 | 0.0386 | 0.0415 |
Final wR(F2) values (all data) | 0.1197 | 0.0866 | 0.1029 |
Goodness of fit on F2 | 1.081 | 1.044 | 1.057 |
Compound | Phase Transition 1 T (°C) (∆H (kJ mol−1)) | T5% (°C) 2 |
---|---|---|
P1 | Cr 153 3 V | 196 |
P2 | Cr 193 (24.2) I | 216 |
P3 | Cr 171 (27.4) I | 214 |
Compound | λabs (THF) (nm) | ε (L mol−1 cm−1) | λem (THF) (nm) | λabs (Film) (nm) | λem (Film) (nm) |
---|---|---|---|---|---|
P1 | 247, 282 | 1.41 × 104, 1.96 × 103 | 333 | 250, 289 | 328 |
P2 | 337 | 1.14 × 104 | - | 333 | - |
P3 | 260, 297 | 1.68 × 104, 1.87 × 103 | 355 | 261, 295 | 361 |
Compound | d(pz3-pz4) | d(pz4-pz5) | d(pz4-Ph) | α |
---|---|---|---|---|
P1·CH3OH | 1.411 | 1.390 | 1.480 | 42.3 |
1.417 | 1.389 | 1.480 | 42.4 | |
P2 | 1.418 | 1.396 | 1.464 | 36.7 |
1.424 | 1.393 | 1.466 | 34.3 | |
P3 | 1.419 | 1.387 | 1.475 | 44.2 |
1.417 | 1.392 | 1.477 | 45.7 |
D-H···A | D-H (Å) | H···A (Å) | D···A (Å) | DH···A (°) |
---|---|---|---|---|
N1-H1N···O3 | 0.91 | 1.863 | 2.769 | 175 |
N4-H4N···O4 | 0.95 | 1.828 | 2.777 | 174 |
O3-H3O···N2 1 | 0.95 | 1.790 | 2.739 | 176 |
O4-H4O···N3 2 | 0.91 | 1.864 | 2.768 | 176 |
D-H···A | D-H (Å) | H···A (Å) | D···A (Å) | D-H···A (°) |
---|---|---|---|---|
N1A-H1A···N2B 1 | 0.88 | 2.02 | 2.874 | 162 |
N1B-H1B···N2A 2 | 0.88 | 2.02 | 2.863 | 160 |
C4B-H4B···O2A 3 | 0.95 | 2.57 | 3.458 | 155 |
C10A-H10A···O2B 4 | 0.98 | 2.54 | 3.488 | 164 |
C11B-H11B···O1A | 0.98 | 2.51 | 3.485 | 171 |
D-H···A | D-H (Å) | H···A (Å) | D···A (Å) | D-H···A (°) |
---|---|---|---|---|
N1A-H1A···N2B 1 | 0.88 | 2.10 | 2.915 | 153 |
N1B-H1B···N3A 2 | 0.88 | 2.04 | 2.906 | 166 |
N3A-H3AB···N3B 3 | 0.90 | 2.18 | 3.075 | 171 |
N3B-H3BA···N2A 4 | 0.90 | 2.16 | 3.047 | 167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moyano, S.; Diosdado, B.; San Felices, L.; Elduque, A.; Giménez, R. Structural Diversity of Hydrogen-Bonded 4-Aryl-3,5-Dimethylpyrazoles for Supramolecular Materials. Materials 2021, 14, 4550. https://doi.org/10.3390/ma14164550
Moyano S, Diosdado B, San Felices L, Elduque A, Giménez R. Structural Diversity of Hydrogen-Bonded 4-Aryl-3,5-Dimethylpyrazoles for Supramolecular Materials. Materials. 2021; 14(16):4550. https://doi.org/10.3390/ma14164550
Chicago/Turabian StyleMoyano, Sandra, Beatriz Diosdado, Leire San Felices, Anabel Elduque, and Raquel Giménez. 2021. "Structural Diversity of Hydrogen-Bonded 4-Aryl-3,5-Dimethylpyrazoles for Supramolecular Materials" Materials 14, no. 16: 4550. https://doi.org/10.3390/ma14164550
APA StyleMoyano, S., Diosdado, B., San Felices, L., Elduque, A., & Giménez, R. (2021). Structural Diversity of Hydrogen-Bonded 4-Aryl-3,5-Dimethylpyrazoles for Supramolecular Materials. Materials, 14(16), 4550. https://doi.org/10.3390/ma14164550