Integrating Geometric Data into Topology Optimization via Neural Style Transfer
Abstract
:1. Introduction
- (a)
- The geometric result from a topology optimization analysis can be influenced efficiently using a reference design rather than directly copying the reference structures.
- (b)
- The work is an early example using a deep learning model to define objectives and/or constraints for topology optimization, expanding available design objectives and/or constraints.
- (c)
- The weighted objective formulation presents a simple method to add additional constraints to the problem for use with new optimizers developed for machine learning and increased performance.
2. Materials and Methods
3. Numerical Examples
3.1. MBB Beam
3.2. Cantilever Beam
3.3. Using Multiple Reference Designs
4. Discussion
4.1. Performance
4.2. Post-Processing
4.3. Connectivity
5. Conclusions
- (a)
- The neural style transfer quantifies the geometric features of the reference and optimized designs efficiently using a Gram matrix calculation of the pre-trained convolutional filter activations for a neural network classifier. As such, the features of the input are replicated rather than directly copied in the optimized design, which expands the number of applicable inputs.
- (b)
- The weighted objective formulation presents a simple method to add additional constraints to the problem and tune the influence for each constraint. The formulation also allows the utilization of new optimizers developed for machine learning and increases performance.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bendsøe, M.P.; Kikuchi, N. Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 1988, 71, 197–224. [Google Scholar] [CrossRef]
- Sigmund, O.; Maute, K. Topology optimization approaches. Struct. Multidiscip. Optim. 2013, 48, 1031–1055. [Google Scholar] [CrossRef]
- Deng, H.; To, A. Topology optimization based on deep representation learning (DRL) for compliance and stress-constrained design. Comput. Mech. 2020, 66, 449–469. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, W.; Quan, D.; Shi, G.; Tang, L.; Hou, Y.; Breitkopf, P.; Zhu, J.; Gao, T. From Topology Optimization Design to Additive Manufacturing: Today’s Success and Tomorrow’s Roadmap. Arch. Comput. Methods Eng. 2020, 27, 805–830. [Google Scholar] [CrossRef]
- Liu, J.; Gaynor, A.; Chen, S.; Kang, Z.; Suresh, K.; Takezawa, A.; Li, L.; Kato, J.; Tang, J.; Wang, C.; et al. Current and future trends in topology optimization for additive manufacturing. Struct. Multidiscip. Optim. 2018, 57, 2457–2483. [Google Scholar] [CrossRef] [Green Version]
- Sylcott, B.; Michalek, J.; Cagan, J. Towards understanding the role of interaction effects in visual conjoint analysis. In Proceedings of the ASME Design Engineering Technical Conference, Portland, ON, USA, 4–7 August 2013; Volume 3A. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.; Dumas, J.; Lefebvre, S.; Wei, L.Y. Structure and appearance optimization for controllable shape design. ACM Trans. Graph. 2015, 34, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, M.; Gao, S. Texture-guided generative structural designs under local control. CAD Comput. Aided Des. 2019, 108, 1–11. [Google Scholar] [CrossRef]
- Bickel, B.; Cignoni, P.; Malomo, L.; Pietroni, N. State of the Art on Stylized Fabrication. Comput. Graph. Forum 2018, 37, 325–342. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Aage, N.; Westermann, R.; Sigmund, O. Infill Optimization for Additive Manufacturing-Approaching Bone-Like Porous Structures. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1127–1140. [Google Scholar] [CrossRef] [Green Version]
- Guest, J.K.; Prévost, J.H.; Belytschko, T. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 2004, 61, 238–254. [Google Scholar] [CrossRef]
- Guest, J.K. Imposing maximum length scale in topology optimization. Struct. Multidiscip. Optim. 2009, 37, 463–473. [Google Scholar] [CrossRef]
- Zimmermann, L.; Chen, T.; Shea, K. A 3D, performance-driven generative design framework: Automating the link from a 3D spatial grammar interpreter to structural finite element analysis and stochastic optimization. Artif. Intell. Eng. Des. Anal. Manuf. 2018, 32, 189–199. [Google Scholar] [CrossRef]
- Kazi, R.H.; Grossman, T.; Cheong, H.; Hashemi, A.; Fitzmaurice, G. DreamSketch: Early Stage 3D Design Explorations with Sketching and Generative Design. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, Quebec City, QC, Canada, 22–25 October 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 401–414. [Google Scholar] [CrossRef]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A. Generative Adversarial Networks: An Overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Jung, Y.; Kim, S.; Lee, I.; Kang, N. Deep Generative Design: Integration of Topology Optimization and Generative Models. J. Mech. Des. 2019, 141, 111405. [Google Scholar] [CrossRef] [Green Version]
- Cang, R.; Yao, H.; Ren, Y. One-shot generation of near-optimal topology through theory-driven machine learning. Comput. Aided Des. 2019, 109, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Gaymann, A.; Montomoli, F. Deep Neural Network and Monte Carlo Tree Search applied to Fluid-Structure Topology Optimization. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef]
- Yu, Y.; Hur, T.; Jung, J.; Jang, I.G. Deep learning for determining a near-optimal topological design without any iteration. Struct. Multidiscip. Optim. 2019, 59, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Banga, S.; Gehani, H.; Bhilare, S.; Patel, S.; Kara, L. 3D Topology Optimization using Convolutional Neural Networks. arXiv 2018, arXiv:1808.07440. [Google Scholar]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. Image Style Transfer Using Convolutional Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2414–2423. [Google Scholar]
- Svanberg, K. The method of moving asymptotes—A new method for structural optimization. Int. J. Numer. Methods Eng. 1987, 24, 359–373. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Shi, S.; Wang, Q.; Xu, P.; Chu, X. Benchmarking State-of-the-Art Deep Learning Software Tools. In Proceedings of the 2016 7th International Conference on Cloud Computing and Big Data (CCBD), Macau, China, 16–18 November 2016; pp. 99–104. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Liu, Q.; Zhang, N.; Yang, W.; Wang, S.; Cui, Z.; Chen, X.; Chen, L. A Review of Image Recognition with Deep Convolutional Neural Network. In Intelligent Computing Theories and Application; Huang, D.S., Bevilacqua, V., Premaratne, P., Gupta, P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 69–80. [Google Scholar]
- Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B.S.; Sigmund, O. Efficient topology optimization in MATLAB using 88 lines of code. Struct. Multidiscip. Optim. 2011, 43, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Groen, J.P.; Sigmund, O. Homogenization-based topology optimization for high-resolution manufacturable microstructures. Int. J. Numer. Methods Eng. 2018, 113, 1148–1163. [Google Scholar] [CrossRef] [Green Version]
- Holmberg, E.; Torstenfelt, B.; Klarbring, A. Stress constrained topology optimization. Struct. Multidiscip. Optim. 2013, 48, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Jing, Y.; Yang, Y.; Feng, Z.; Ye, J.; Yu, Y.; Song, M. Neural Style Transfer: A Review. IEEE Trans. Vis. Comput. Graph. 2019, 26, 3365–3385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, G.; Memisevic, R. Incorporating long-range consistency in CNN-based texture generation. In Proceedings of the 5th International Conference on Learning Representations ICLR 2017-Conference Track Proceedings, International Conference on Learning Representations, ICLR, Toulon, France, 24–26 April 2017. [Google Scholar]
- Gatys, L.; Ecker, A.; Bethge, M.; Hertzmann, A.; Shechtman, E. Controlling perceptual factors in neural style transfer. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, Hawaii, USA, 21–26 July 2017; pp. 3730–3738. [Google Scholar] [CrossRef] [Green Version]
- De Lasa, M.; Hertzmann, A. Prioritized optimization for task-space control. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009; pp. 5755–5762. [Google Scholar] [CrossRef]
Variable | Value |
---|---|
Elements in x-direction | 400 |
Elements in y-direction | 200 |
Filter Radius for Sensitivity Analysis | 1.5 elements |
Mass Penalty for Finite Element Analysis | 3.0 |
Young’s Modulus | – |
Poisson’s Ratio | 0.3 |
Force | 1.0 |
Structural Compliance Weight | 1 |
Neural Style Transfer Weight | – |
Volume Fraction Weight | 0.1 |
Standard Deviation Weight | 0.1 |
Number of Iterations | 500 |
Step Size for Adam Optimizer | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vulimiri, P.S.; Deng, H.; Dugast, F.; Zhang, X.; To, A.C. Integrating Geometric Data into Topology Optimization via Neural Style Transfer. Materials 2021, 14, 4551. https://doi.org/10.3390/ma14164551
Vulimiri PS, Deng H, Dugast F, Zhang X, To AC. Integrating Geometric Data into Topology Optimization via Neural Style Transfer. Materials. 2021; 14(16):4551. https://doi.org/10.3390/ma14164551
Chicago/Turabian StyleVulimiri, Praveen S., Hao Deng, Florian Dugast, Xiaoli Zhang, and Albert C. To. 2021. "Integrating Geometric Data into Topology Optimization via Neural Style Transfer" Materials 14, no. 16: 4551. https://doi.org/10.3390/ma14164551
APA StyleVulimiri, P. S., Deng, H., Dugast, F., Zhang, X., & To, A. C. (2021). Integrating Geometric Data into Topology Optimization via Neural Style Transfer. Materials, 14(16), 4551. https://doi.org/10.3390/ma14164551