Micronized Oat Husk: Particle Size Distribution, Phenolic Acid Profile and Antioxidant Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Composition
2.2. Husk Sterilization
2.3. Microbiological Purity of OH
2.4. Micronization of OH
2.5. Particle Size Distribution
2.6. Antioxidant Properties
2.7. UPLC-MS/MS Phenolics Acids Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Basic Composition and Microorganisms Identification
3.2. Particle Size Distribution
3.3. Antioxidant Activity (AA) of OH
3.4. Phenolic Acids Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shewry, P.R.; Piironen, V.; Lampi, A.M.; Nyström, L.; Li, L.; Rakszegi, M.; Fraś, A.; Boros, D.; Gebruers, K.; Courtin, C.M.; et al. Phytochemical and fiber components in oat varieties in the healthgrain diversity screen. J. Agric. Food Chem. 2008, 56, 9777–9784. [Google Scholar] [CrossRef] [PubMed]
- Nurullaeva, D.; Farmanova, N.; Luzhanin, V.; Povidysh, M.; Orlova-Lebedkova, A. Chemical components and biological activity of oats seed-avena sativa I. Int. J. Pharm. Res. 2020, 12, 221–229. [Google Scholar] [CrossRef]
- Demirel, F.; Germec, M.; Coban, H.B.; Turhan, I. Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition. Cellulose 2018, 25, 6377–6393. [Google Scholar] [CrossRef]
- McDonald, P.; Edwards, R.; Greenhalgh, J.F.D.; Morgan, C.; Sinclair, L.; Wilkinson, R.G. Grass and forage crops. In Animal Nutrition, 7th ed.; Pearson: Harlow, UK, 2011; pp. 553–554. [Google Scholar]
- Emmons, C.L.; Peterson, D.M. Antioxidant activity and phenolic contents of oat groats and hulls. Cereal Chem. 1999, 76, 902–906. [Google Scholar] [CrossRef]
- Piątkowska, E.; Witkowicz, R.; Pisulewska, E. Antioxidant properties of selected cultivars of oats. Food Sci. Technol. Qual. 2010, 14, 100–107. [Google Scholar] [CrossRef]
- Marlett, J.A.; McBurney, M.I.; Slavin, J.L. Position of the American Dietetic Association: Health implications of dietary fiber. J. Am. Diet. Assoc. 2002, 102, 993–1000. [Google Scholar] [CrossRef]
- De Oliveira, J.P.; Bruni, G.P.; Lima, K.O.; El Halal, S.L.M.; DA Rosa, G.S.; Dias, A.R.G.; Zavareze, E.D.R. Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chem. 2017, 221, 153–160. [Google Scholar] [CrossRef]
- Welch, R.W.; Hayward, M.V.; Jones, D.I.H. The composition of oat husk and its variation due to genetic and other factors. J. Sci. Food Agric. 1983, 34, 417–426. [Google Scholar] [CrossRef]
- Girardet, N.; Webster, F.H. Oat milling: Specifications, storage, and processing. In Oats: Chemistry and Technology, 2nd ed.; Webster, F.H., Ed.; Elsevier: Amstedrdam, The Netherlands, 2011; pp. 301–319. [Google Scholar]
- Piwińska, M.; Wyrwisz, J.; Wierzbicka, A. Effect of micronization of high-fiber oat powder and vacuum-drying on pasta quality. CYTA J. Food 2016, 14, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Lapčíková, B.; Burešová, I.; Lapčík, L.; Dabash, V.; Valenta, T. Impact of particle size on wheat dough and bread characteristics. Food Chem. 2019, 297, 124938. [Google Scholar] [CrossRef]
- Kurek, M.A.; Sokolova, N. Optimization of bread quality with quinoa flour of different particle size and degree of wheat flour replacement. Food Sci. Technol. 2020, 40, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Drakos, A.; Kyriakakis, G.; Evageliou, V.; Protonotariou, S.; Mandala, I.; Ritzoulis, C. Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours. Food Chem. 2017, 215, 326–332. [Google Scholar] [CrossRef]
- Frohlich, P.; Young, G.; Bourré, L.; Borsuk, Y.; Sarkar, A.; Sopiwnyk, E.; Pickard, M.; Dyck, A.; Malcolmson, L. Effect of premilling treatments on the functional and bread-baking properties of whole yellow pea flour using micronization and pregermination. Cereal Chem. 2019, 96, 895–907. [Google Scholar] [CrossRef]
- Xue, X.; Wang, J.; Li, S.; Zhang, X.; Dong, J.; Gui, L.; Chang, Q. Effect of micronised oat bran by ultrafine grinding on dietary fibre, texture and rheological characteristic of soft cheese. Int. J. Food Sci. Technol. 2020, 55, 578–588. [Google Scholar] [CrossRef]
- Protonotariou, S.; Drakos, A.; Evageliou, V.; Ritzoulis, C.; Mandala, I. Sieving fractionation and jet mill micronization affect the functional properties of wheat flour. J. Food Eng. 2014, 134, 24–29. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, M.; Bhandari, B.; Yang, Z. Micronization and nanosizing of particles for an enhanced quality of food: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 993–1001. [Google Scholar] [CrossRef]
- Zhu, F.M.; Du, B.; Li, J. Effect of ultrafine grinding on physicochemical and antioxidant properties of dietary fiber from wine grape pomace. Food Sci. Technol. Int. 2014, 20, 55–62. [Google Scholar] [CrossRef]
- Hussain, S.; Li, J.; Jin, W.; Yan, S.; Wang, Q. Effect of micronisation on dietary fibre content and hydration properties of lotus node powder fractions. Int. J. Food Sci. Technol. 2018, 53, 590–598. [Google Scholar] [CrossRef]
- Speroni, C.S.; Guerra, D.R.; Bender, A.B.B.; Stiebe, J.; Ballus, C.A.; da Silva, L.P.; Lozano-Sánchez, J.; Emanuelli, T. Micronization increases the bioaccessibility of polyphenols from granulometrically separated olive pomace fractions. Food Chem. 2020, 344, 128689. [Google Scholar] [CrossRef] [PubMed]
- Bender, A.B.B.; Speroni, C.S.; Moro, K.I.B.; Morisso, F.D.P.; dos Santos, D.R.; da Silva, L.P.; Penna, N.G. Effects of micronization on dietary fiber composition, physicochemical properties, phenolic compounds, and antioxidant capacity of grape pomace and its dietary fiber concentrate. LWT Food Sci. Technol. 2020, 117, 108652. [Google Scholar] [CrossRef]
- Dziki, D.; Laskowski, J.; Przypek-Ochab, D. Energy consumption at grinding of black oat grain. Zesz. Probl. Postępów Nauk Rol. 2010, 546, 93–97. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., Latimer, G.W., Jr., Eds.; Revision 4; AOAC International: Gaithersburg, MA, USA, 2010. [Google Scholar]
- ISO. 21527-1/2:2008—Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds, 1st ed.; International Standardization Organization: Geneva, Switzerland, 2008. [Google Scholar]
- ISO. 4833-1 Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony count at 30 °C by the Pour Plate Technique; ISO: Geneva, Switzerland, 2013. [Google Scholar]
- ISO. 7251 Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection and Enumeration of Presumptive Escherichia Coli—Most Probable Number Technique; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- ISO. 6579 Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping Of Salmonella—Part 1: Detection Of Salmonella spp.; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- PN-EN ISO. 7932:2005—Food and Feed Microbiology—Horizontal Method for the Enumeration of Presumptive Bacillus Cereus—Colony Enumeration Method At 30 °C; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- Dziki, D.; Tarasiuk, W.; Łysiak, G.; Jochymek, P. The study of particle size distribution of micronized oat bran layer. Agric. Eng. 2020, 24, 45–54. [Google Scholar] [CrossRef]
- Ma, S.; Wang, C.; Li, L.; Wang, X. Effects of particle size on the quality attributes of wheat flour made by the milling process. Cereal Chem. 2020, 97, 172–182. [Google Scholar] [CrossRef]
- Liu, T.Y.; Ma, Y.; Yu, S.F.; Shi, J.; Xue, S. The effect of ball milling treatment on structure and porosity of maize starch granule. Innov. Food Sci. Emerg. Technol. 2011, 12, 586–593. [Google Scholar] [CrossRef]
- Złotek, U.; Karaś, M.; Gawlik-Dziki, U.; Szymanowska, U.; Baraniak, B.; Jakubczyk, A. Antioxidant activity of the aqueous and methanolic extracts of coffee beans (Coffea arabica L.). Acta Sci. Pol. Technol. Aliment. 2016, 15, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.T.; Lee, H.L.; Chiang, S.H.; Lin, F.I.; Chang, C.Y. Antioxidant properties of the extracts from different parts of broccoli in Taiwan. J. Food Drug Anal. 2001, 9, 96–101. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Świeca, M.; Dziki, D.; Baraniak, B.; Tomiło, J.; Czyz, J. Quality and antioxidant properties of breads enriched with dry onion (Allium cepa L.) skin. Food Chem. 2013, 138, 1621–1628. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Romankiewicz, D.; Hassoon, W.H.; Cacak-Pietrzak, G.; Sobczyk, M.; Wirkowska-WojdyBa, M.; CegliNska, A.; Dziki, D. The effect of chia seeds (Salvia hispanica L.) addition on quality and nutritional value of wheat bread. J. Food Qual. 2017, 2017, 7352631. [Google Scholar] [CrossRef] [Green Version]
- Plavsic, D.; Skrinjar, M.; Psodorov, D.; Saric, L.; Psodorov, D.; Varga, A.; Mandic, A. Mycopopulations of grain and flour of wheat, corn and buckwheat. Food Feed Res. 2017, 44, 39–45. [Google Scholar] [CrossRef]
- Cardoso, R.V.C.; Fernandes, Â.; Heleno, S.A.; Rodrigues, P.; Gonzaléz-Paramás, A.M.; Barros, L.; Ferreira, I.C.F.R. Physicochemical characterization and microbiology of wheat and rye flours. Food Chem. 2019, 280, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Aydin, A.; Peter, P.; Smulders, F.J.M. The physico-chemical and microbiological properties of wheat flour in Thrace. Turk. J. Agric. For. 2009, 33, 445–454. [Google Scholar] [CrossRef]
- Wroniak, M.; Chlebowska-Smigiel, A. Impact of purity of rapeseed and oil purification method on selected properties of cold-pressed oils. Żywność Nauk. Technol. Jakość 2013, 4, 133–139. [Google Scholar] [CrossRef]
- Dziki, D. The crushing of wheat kernels and its consequence on the grinding process. Powder Technol. 2008, 185, 181–186. [Google Scholar] [CrossRef]
- Jung, H.; Lee, Y.J.; Yoon, W.B. Effect of moisture content on the grinding process and powder properties in food: A review. Processes 2018, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Kurek, M.; Wyrwisz, J.; Piwińska, M.; Wierzbicka, A. The effect of oat fibre powder particle size on the physical properties of wheat bread rolls. Food Technol. Biotechnol. 2016, 54, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Piwińska, M.; Wyrwisz, J.; Kurek, M.; Wierzbicka, A. Effect of oat β-glucan fiber powder and vacuum-drying on cooking quality and physical properties of pasta. CYTA J. Food 2016, 14, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Wang, Z.; Zhao, Z.; Jing, X.; Zhang, L. Effects of Pretreatment Methods of Oat on Textural and Sensory Properties of Harbin Sausage. J. Chin. Inst. Food Sci. Technol. 2017, 17, 82–88. [Google Scholar] [CrossRef]
- Wang, L.; Flores, R.A. Effects of flour particle size on the textural properties of flour tortillas. J. Cereal Sci. 2000, 31, 263–272. [Google Scholar] [CrossRef]
- Krishnakumar, I.M.; Ravi, A.; Kumar, D.; Kuttan, R.; Maliakel, B. An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. J. Funct. Food 2012, 4, 348–357. [Google Scholar] [CrossRef]
- Peterson, D.M. Oat antioxidants. J. Cereal Sci. 2001, 33, 115–129. [Google Scholar] [CrossRef]
- Varga, M.; Jójárt, R.; Fónad, P.; Mihály, R.; Palágyi, A. Phenolic composition and antioxidant activity of colored oats. Food Chem. 2018, 268, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Rosa, N.N.; Barron, C.; Gaiani, C.; Dufour, C. Ultra-fine grinding increases the antioxidant capacity of wheat bran. J. Cereal Sci. 2013, 57, 84–90. [Google Scholar] [CrossRef]
- Zhu, K.X.; Huang, S.; Peng, W.; Qian, H.F.; Zhou, H.M. Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber. Food Res. Int. 2010, 43, 943–948. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, F.; Liu, R.; Tang, X.; Zhang, Q.; Zhang, Z. Effects of superfine grinding on physicochemical and antioxidant properties of Lycium barbarum polysaccharides. LWT Food Sci. Technol. 2014, 58, 594–601. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, H.; Zhang, G.; Tang, W. Effect of superfine grinding on the physicochemical properties and antioxidant activity of red grape pomace powders. Powder Technol. 2015, 286, 838–844. [Google Scholar] [CrossRef]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef]
- MacDonald, R.S.; Wagner, K. Influence of dietary phytochemicals and microbiota on colon cancer risk. J. Agric. Food Chem. 2012, 60, 6728–6735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J. Food Sci. 2011, 76, R6–R15. [Google Scholar] [CrossRef] [Green Version]
- Saura-Calixto, F. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. J. Agric. Food Chem. 2011, 59, 43–49. [Google Scholar] [CrossRef]
- Tuohy, K.M.; Conterno, L.; Gasperotti, M.; Viola, R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J. Agric. Food Chem. 2012, 60, 8776–8782. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2012, 4, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Moghadasian, M.H. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem. 2008, 109, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Uraji, M.; Kimura, M.; Inoue, Y.; Kawakami, K.; Kumagai, Y.; Harazono, K.; Hatanaka, T. Enzymatic production of ferulic acid from defatted rice bran by using a combination of bacterial enzymes. Appl. Biochem. Biotechnol. 2013, 171, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Juhnevica-Radenkova, K.; Kviesis, J.; Moreno, D.A.; Seglina, D.; Vallejo, F.; Valdovska, A.; Radenkovs, V. Highly-efficient release of ferulic acid from agro-industrial by-products via enzymatic hydrolysis with cellulose-degrading enzymes: Part I—The superiority of hydrolytic enzymes versus conventional hydrolysis. Foods 2021, 10, 782. [Google Scholar] [CrossRef]
Oat Husk | Yeast and Moulds | Aerobic Plate Count | Escherichia coli | Batocillus Cereus | Salmonella |
---|---|---|---|---|---|
Before Sterilization | 4.0·105 ± 2.0·105 | 4.6·106 ± 2.3·106 | nd * | nd | nd |
After Sterilization | <101 | 2.6·103 ± 0.5·101 | nd | nd | nd |
Sample | Revolution of Disc (rpm) | Revolution of Classifier Wheel (rpm) | d10 (µm) | d50 (µm) | d90 (µm) | Span |
---|---|---|---|---|---|---|
H1 | 2600 | 480 | 6.2 ± 0.05 m,* | 41.3 ± 1.02 h | 249 ± 11.4 j,k | 5.9 ± 0.16 i |
H2 | 2600 | 965 | 6.1 ± 0.07 m | 55.7 ± 3.76 j | 282 ± 16.0 n | 5.0 ± 0.23 g |
H3 | 2600 | 1450 | 5.5 ± 0.05 l | 50.6 ± 1.33 i | 277 ± 5.1 m,n | 5.4 ± 0.12 h |
H4 | 2600 | 1930 | 5.3 ± 0.04 k | 47.6 ± 1.45 i | 269 ± 6.9l m,n | 5.5 ± 0.04 h |
H5 | 2600 | 2410 | 4.9 ± 0.04 i | 40.0 ± 0.71 h | 264 ± 4.6l m | 6.5 ± 0.11 j |
H6 | 2600 | 2890 | 4.2 ± 0.02 e | 22.9 ± 0.24 d,e | 185 ± 3.1 f | 7.9 ± 0.11 l |
H7 | 2970 | 480 | 7.1 ± 0.09 n | 56.1 ± 3.18 j | 268 ± 10.9 l,m | 4.6 ± 0.10 e,f |
H8 | 2970 | 965 | 5.1 ± 0.07 k | 42.6 ± 1.50 h | 233 ± 3.5 h,i | 5.4 ± 0.11 h |
H9 | 2970 | 1450 | 4.7 ± 0.07 h | 40.1 ± 3.97 h | 224 ± 17.1 h | 5.5 ± 0.13 h |
H10 | 2970 | 1930 | 3.8 ± 0.04 d | 26.3 ± 0.78 f | 179 ± 7.3 f | 6.7 ± 0.10 j |
H11 | 2970 | 2410 | 3.8 ± 0.07 d | 20.8 ± 0.95 c,d | 150 ± 7.2 d | 7.1 ± 0.23 k |
H12 | 2970 | 2890 | 3.4 ± 0.03 c | 15.5 ± 0.22 a | 105 ± 4.3 b | 6.6 ± 0.21 j |
H13 | 3340 | 480 | 7.7 ± 0.04 o | 63.8 ± 1.67 k | 261 ± 4.7 k | 4.0 ± 0.06 a,b |
H14 | 3340 | 965 | 4.1 ± 0.23 e | 25.8 ± 3.98 e,f | 174 ± 19.9 e,f,l | 6.6 ± 0.28 j |
H15 | 3340 | 1450 | 5.0 ± 0.07 j | 41.2 ± 0.89 h | 203 ± 4.7 g | 4.8 ± 0.07 f,g |
H16 | 3340 | 1930 | 4.3 ± 0.08 f | 28.8 ± 0.81 f | 180 ± 8.0 f | 6.1 ± 0.15 i |
H17 | 3340 | 2410 | 3.4 ± 0.05 b,c | 20.2 ± 0.41b c,d | 125 ± 2.6 c | 6.0 ± 0.11 i |
H18 | 3340 | 2890 | 3.2 ± 0.03 a | 17.4 ± 0.16 a,b | 99 ± 2.3 b | 5.5 ± 0.11 h |
H19 | 3710 | 480 | 7.8 ± 0.12 o | 67.4 ± 1.26 l | 265 ± 5.1 l,m | 3.8 ± 0.11 a |
H20 | 3710 | 965 | 7.1 ± 0.09 n | 57.1 ± 1.04 j | 243 ± 9.0 I,j | 4.1 ± 0.11 b,c,d |
H21 | 3710 | 1450 | 4.5 ± 0.05 g | 34.5 ± 0.66 g | 161 ± 3.9 d | 4.5 ± 0.09 e |
H22 | 3710 | 1930 | 4.2 ± 0.04 e | 26.2 ± 0.32 f | 113 ± 1.8 b,c | 4.2 ± 0.07 b,c |
H23 | 3710 | 2410 | 3.3 ± 0.03 c,b | 18.2 ± 0.41 b,c | 78 ± 1.8 a | 4.1 ± 0.17 b |
H24 | 3710 | 2890 | 3.3 ± 0.05 b,c | 16.7 ± 0.29 a | 75.1 ± 1.8 a | 4.3 ± 0.12 c,d |
Parameter | Source of Variance | Sum of Squares | Degrees of Freedom | Mean Square | F-Test | p-Value |
---|---|---|---|---|---|---|
d10 | vd * | 5.34 | 3 | 1.78 | 283 | 0.0001 |
vk | 27.06 | 5 | 5.41 | 859 | 0.0001 | |
vd·vk | 17.43 | 15 | 1.16 | 184 | 0.0001 | |
Error | 0.756 | 120 | 0.006 | - | - | |
d50 | vd | 943.5 | 3 | 314.5 | 692.4 | 0.0001 |
vk | 4976.3 | 5 | 995.3 | 2191.3 | 0.0001 | |
vd·vk | 3592.5 | 15 | 239.5 | 527.3 | 0.0001 | |
Error | 54.5 | 120 | 0.5 | - | - | |
d90 | vd * | 23.225 | 3 | 7742 | 647.4 | 0.0001 |
vk | 147.444 | 5 | 29.489 | 2466 | 0.0001 | |
vd·vk | 94.26 | 15 | 6284 | 525.5 | 0.0001 | |
Error | 1435 | 120 | 12 | - | - | |
Span | vd * | 21.1 | 3 | 7.04 | 813.6 | 0.0001 |
vk | 11.3 | 5 | 2.26 | 260.5 | 0.0001 | |
vd·vk | 27.4 | 15 | 1.83 | 211.6 | 0.0001 | |
Error | 1.04 | 120 | 0.009 | - | - |
Dependent Variable | Equation Parameter | Standardized Coefficient of Regression | Standard Error | Coefficient of Regression | Standard Error | t (213) | p-Value | R2 | Model’s Error |
---|---|---|---|---|---|---|---|---|---|
d10 | Intercept | - | - | 8.155 | 0.402 | 20.262 | 0.00001 | 0.722 | 0.740 |
vd * | −0.846 | 0.0361 | −0.00144 | 0.00006 | −23.420 | 0.00001 | |||
vk | −0.077 | 0.0361 | −0.00026 | 0.00012 | −2.118 | 0.03534 | |||
d50 | Intercept | - | - | 79.94267 | 4.76189 | 16.788 | 0.00001 | 0.785 | 8.79 |
vd | −0.822 | 0.038 | −0.01579 | 0.00073 | −21.718 | 0.00001 | |||
vk | −0.139 | 0.038 | −0.00532 | 0.00145 | −3.677 | 0.00001 | |||
d90 | Intercept | - | - | 561.98 | 17.08 | 32.91 | 0.00001 | 0.784 | 31.5 |
vd | −0.716 | 0.03178 | −0.0587 | 0.00261 | −22.52 | 0.00001 | |||
vk | −0.522 | 0.03178 | −0.0852 | 0.00519 | −16.42 | 0.00001 | |||
Span | Intercept | - | - | 9.5329 | 0.38747 | 24.60 | 0.00001 | 0.577 | 0.715 |
vd | −0.6143 | 0.0445 | −0.0016 | 0.00012 | −13.79 | 0.00001 | |||
vk | 0.4471 | 0.0445 | 0.0006 | 0.00006 | 10.02 | 0.00001 |
Sample | EC50CHEL [mg dm/mL] | EC50ABTS [mg dm/mL] | EC50DPPH [mg/mL] |
---|---|---|---|
H1 | 37.05 ± 1.35 h,i | 41.3 ± 1.2 a–g | 80.5 ± 1.2 a,b,c |
H2 | 37.79 ± 0.40 i | 42.2 ± 2.1 c–g | 82.5 ± 1.92 a,b,c |
H3 | 36.23 ± 0.36 h,i | 43.2 ± 2.1 e,f,g | 80.9 ± 1.42 a,b,c |
H4 | 36.40 ± 0.41 h,i | 44.9 ± 1.8 g | 82.2 ± 2.42 a,b,c |
H5 | 35.27 ± 0.34 f–i | 44.1 ± 1.4 f,g | 82.1 ± 1.72 a,b,c |
H6 | 28.20 ± 0.36 a,b | 41.9 ± 1.6 b–g | 77.8 ± 1.72 a,b,c |
H7 | 36.30 ± 0.45 h,i | 44.4 ± 2.0 g | 85.1 ± 1.4 a,c |
H8 | 34.47 ± 0.64 f,g,h | 43.0 ± 2.0 e,f,g | 81.3 ± 1.12 a,b,c |
H9 | 34.83 ± 0.57 f,g,h | 40.4 ± 1.3 a–g | 82.1 ± 1.72 a,b,c |
H10 | 29.75 ± 0.85 a–d | 37.9 ± 2.3 a–e | 77.5 ± 1.22 a,b,c |
H11 | 29.73 ± 0.55 a,b,c | 38.1 ± 1.6 a–f | 76.9 ± 1.3 a |
H12 | 28.06 ± 0.49 a,b | 35.9 ± 1.6 a,b | 78.7 ± 3.4 a,b |
H13 | 35.64 ± 0.82 g,h,i | 42.6 ± 2.6 d,e,f,g | 81.8 ± 3.72 a,b,c |
H14 | 30.51 ± 0.36 a–e | 41.2 ± 2.7 a–g | 79.4 ± 2.72 a,b,c |
H15 | 33.27 ± 1.11 e,f,g | 42.9 ± 2. 5 e,f,g | 83.2 ± 0.52 a,b,c |
H16 | 32.67 ± 0.82 d,e,f | 39.9 ± 2.17 a–g | 81.0 ± 3.82 a,b,c |
H17 | 30.6 ± 1.09b c,d,e | 36.4 ± 2.00 a,b,c | 77.2 ± 1.8 a |
H18 | 28.77 ± 0.79 a,b,c | 36.5 ± 0.9 a,b,c,d | 78.0 ± 1.2 a,b |
H19 | 36.37 ± 0.91 h,i | 41.4 ± 1.67 a–g | 83.6 ± 1.02 a,b,c |
H20 | 37.33 ± 1.15 h,i | 42.4 ± 2.2 c–g | 83.0 ± 2.12 a,b,c |
H21 | 34.60 ± 0.72 f,g,h | 37.5 ± 2.1 a–e | 80.9 ± 1.72 a,b,c |
H22 | 31.33 ± 1.10 c,d,e | 37.2 ± 2.1 a–e | 77.1 ± 1.6 a |
H23 | 31.27 ± 0.76 c,d,e | 35.3 ± 2.1 a | 77.9 ± 2.2 a,b |
H24 | 27.67 ± 2.59 a | 35.6 ± 1.6 a | 79.7 ± 3.2 a,b |
Parameter | CHEL * | ABTS | DPPH | |||
---|---|---|---|---|---|---|
r | p-Value | r | p-Value | r | p-Value | |
d10 | 0.822 | p = 0.0001 | 0.752 | p = 0.0001 | 0.854 | p = 0.0001 |
d50 | 0.887 | p = 0.0001 | 0.696 | p = 0.0001 | 0.795 | p = 0.0001 |
d90 | 0.845 | p = 0.0001 | 0.908 | p = 0.0001 | 0.798 | p = 0.0001 |
Phenolic Acid | Sample | ||
---|---|---|---|
H12 | H17 | H24 | |
Protocatechuic acid | 0.73 ± 0.02 a | 0.76 ± 0.01 a | 0.74 ± 0.05 a |
p-Hydroxybenzoic | 5.12 ± 0.07 a | 5.13 ± 0.17 a | 5.05 ± 0.16 a |
Vanillic | 4.26 ± 0.31 a | 4.24 ± 0.27 a | 4.33 ± 0.12 a |
Caffeic | 6.26 ± 0.01 a | 6.28 ± 0.10 a | 6.18 ± 0.21 a |
Syringic | 3.14 ± 0.17 a | 3.07 ± 0.16 a | 3.03 ± 0.18 a |
p-Coumaric | Nq ** | Nq | Nq |
Ferulic | 438.19 ± 14.32 a | 427.93 ± 8.18 a | 433.37 ± 6.79 a |
Synapic | 1.84 ± 0.07 a | 1.92 ± 0.13 a | 1.83 ± 0.11 a |
Salycilic | Nd | Nd | Nd |
Total | 459.55 ± 14.22 a | 449.32 ± 8.28 a | 454.52 ± 7.22 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziki, D.; Tarasiuk, W.; Gawlik-Dziki, U. Micronized Oat Husk: Particle Size Distribution, Phenolic Acid Profile and Antioxidant Properties. Materials 2021, 14, 5443. https://doi.org/10.3390/ma14185443
Dziki D, Tarasiuk W, Gawlik-Dziki U. Micronized Oat Husk: Particle Size Distribution, Phenolic Acid Profile and Antioxidant Properties. Materials. 2021; 14(18):5443. https://doi.org/10.3390/ma14185443
Chicago/Turabian StyleDziki, Dariusz, Wojciech Tarasiuk, and Urszula Gawlik-Dziki. 2021. "Micronized Oat Husk: Particle Size Distribution, Phenolic Acid Profile and Antioxidant Properties" Materials 14, no. 18: 5443. https://doi.org/10.3390/ma14185443
APA StyleDziki, D., Tarasiuk, W., & Gawlik-Dziki, U. (2021). Micronized Oat Husk: Particle Size Distribution, Phenolic Acid Profile and Antioxidant Properties. Materials, 14(18), 5443. https://doi.org/10.3390/ma14185443