Propolis and Organosilanes as Innovative Hybrid Modifiers in Wood-Based Polymer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Wood Treatment
2.3. Characterisation of Treataed Wood
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.2. Atomic Absorption Spectrometry (AAS)
2.3.3. X-ray Powder Diffraction (XRD)
2.3.4. Biological Activity of Treated Wood
2.4. Preparation of Composite Materials
2.5. Characterisation of Composite Materials
2.5.1. Differential Scanning Calorimetry (DSC)
2.5.2. Morphological Analysis
2.5.3. Structural Investigations (XRD)
2.5.4. Mechanical Properties
3. Results and Discussion
3.1. Characterisation of Treated Wood
3.1.1. Fourier Transform Infrared Spectroscopy
3.1.2. Atomic Absorption Spectrometry
3.1.3. X-ray Diffraction (XRD)
3.1.4. Biological Analysis
3.2. Characteristics of Composite Materials
3.2.1. Differential Scanning Calorimetry of WPC
3.2.2. Polarized Light Microscopy of WPC (PLM)
3.2.3. X-ray Diffraction Analysis of WPC
3.2.4. Mechanical Properties of WPC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Cichosz, S.; Masek, A.; Wolski, K.; Zaborski, M. Universal approach of cellulose fibres chemical modification result analysis via commonly used techniques. Polym. Bull. 2019, 76, 2147–2162. [Google Scholar] [CrossRef] [Green Version]
- Gironès, J.; Méndez, J.A.; Boufi, S.; Vilaseca, F.; Mutjé, P. Effect of silane coupling agents on the properties of pine fibers/polypropylene composites. J. Appl. Polym. Sci. 2007, 103, 3706–3717. [Google Scholar] [CrossRef]
- Sobczak, L.; Brüggemann, O.; Putz, R.F. Polyolefin composites with natural fibers and wood-modification of the fiber/filler-matrix interaction. J. Appl. Polym. Sci. 2013, 127, 1–17. [Google Scholar] [CrossRef]
- Borysiak, S. Fundamental studies on lignocellulose/polypropylene composites: Effects of wood treatment on the transcrystalline morphology and mechanical properties. J. Appl. Polym. Sci. 2013, 127, 1309–1322. [Google Scholar] [CrossRef]
- Borysiak, S.; Grząbka-Zasadzińska, A.; Odalanowska, M.; Skrzypczak, A.; Ratajczak, I. The effect of chemical modification of wood in ionic liquids on the supermolecular structure and mechanical properties of wood/polypropylene composites. Cellulose 2018, 25, 4639–4652. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, R.; Ogunsona, E.O.; Hojabr, S.; Berry, R.; Mekonnen, T.H. Synergistic cross-linking and reinforcing enhancement of rubber latex with cellulose nanocrystals for glove applications. ACS Appl. Polym. Mater. 2020, 2, 887–898. [Google Scholar] [CrossRef]
- Farsi, M. Wood-plastic composites: Influence of wood flour chemical modification on the mechanical performance. J. Reinf. Plast. Compos. 2010, 29, 3587–3592. [Google Scholar] [CrossRef]
- Gwon, J.G.; Lee, S.Y.; Doh, G.H.; Kim, J.H. Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J. Appl. Polym. Sci. 2010, 116, 3212–3219. [Google Scholar] [CrossRef]
- Bengtsson, M.; Oksman, K. The use of silane technology in crosslinking polyethylene/wood flour composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 752–765. [Google Scholar] [CrossRef]
- Xie, Y.; Hill, C.A.S.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
- Alonso, E.; Pothan, L.A.; Ferreira, A.; Cordeiro, N. Surface modification of banana fibers using organosilanes: An IGC insight. Cellulose 2019, 26, 3643–3654. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, X.; Peng, Y.; Cao, J. Water absorption and mold susceptibility of wood flour/polypropylene composites modified with silane-wax emulsions. Polym. Compos. 2019, 40, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, M.; Aghmashadi, Z.A.; Amininasab, S.M.; Abedini, R. Effect of different coupling agents on chemical structure and physical properties of vinyl acetate/wood polymer composites. J. Appl. Polym. Sci. 2019, 136, 1–6. [Google Scholar] [CrossRef]
- Ghorbani, M.; Poorzahed, N.; Amininasab, S.M. Morphological, physical, and mechanical properties of silanized wood-polymer composite. J. Compos. Mater. 2020, 54, 1403–1412. [Google Scholar] [CrossRef]
- Fang, L.; Chang, L.; Guo, W.J.; Chen, Y.; Wang, Z. Influence of silane surface modification of veneer on interfacial adhesion of wood-plastic plywood. Appl. Surf. Sci. 2014, 288, 682–689. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, L.; Wang, W.; Sun, Y.; Wang, H. Modifying wood veneer with silane coupling agent for decorating wood fiber/high-density polyethylene composite. Constr. Build. Mater. 2019, 224, 691–699. [Google Scholar] [CrossRef]
- Panov, D.; Terziev, N. Study on some alkoxysilanes used for hydrophobation and protection of wood against decay. Int. Biodeterior. Biodegrad. 2009, 63, 456–461. [Google Scholar] [CrossRef]
- Hill, C.A.S.; Farahani, M.R.M.; Hale, M.D.C. The use of organo alkoxysilane coupling agents for wood preservation. Holzforschung 2004, 58, 316–325. [Google Scholar] [CrossRef]
- Kartal, S.N.; Yoshimura, T.; Imamura, Y. Modification of wood with Si compounds to limit boron leaching from treated wood and to increase termite and decay resistance. Int. Biodeterior. Biodegrad. 2009, 63, 187–190. [Google Scholar] [CrossRef]
- Szubert, K.; Dutkiewicz, A.; Dutkiewicz, M.; Maciejewski, H. Wood protective coatings based on fluorocarbosilane. Cellulose 2019, 26, 9853–9861. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.W.; Lee, S.Y.; Chun, S.J.; Doh, G.H.; Paik, K.H. Effect of silane coupling on the fundamental properties of wood flour reinforced polypropylene composites. J. Compos. Mater. 2011, 45, 1595–1605. [Google Scholar] [CrossRef]
- Ichazo, M.N.; Albano, C.; González, J.; Perera, R.; Candal, M.V. Polypropylene/wood flour composites: Treatments and properties. Compos. Struct. 2001, 54, 207–214. [Google Scholar] [CrossRef]
- Nachtigall, S.M.B.; Cerveira, G.S.; Rosa, S.M.L. New polymeric-coupling agent for polypropylene/wood-flour composites. Polym. Test. 2007, 26, 619–628. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, T.; Mi, N.; Wang, Y.; Li, G.; Wang, L.; Xie, Y. Antifungal activity of monoterpenes against wood white-rot fungi. Int. Biodeterior. Biodegrad. 2016, 106, 157–160. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Z.; Huang, Q.; Zhang, D. Antifungal activity of several essential oils and major components against wood-rot fungi. Ind. Crops Prod. 2017, 108, 278–285. [Google Scholar] [CrossRef]
- Salem, M.Z.M.; Zidan, Y.E.; Mansour, M.M.A.; El Hadidi, N.M.N.; Abo Elgat, W.A.A. Antifungal activities of two essential oils used in the treatment of three commercial woods deteriorated by five common mold fungi. Int. Biodeterior. Biodegrad. 2016, 106, 88–96. [Google Scholar] [CrossRef]
- Larnøy, E.; Dantz, S.; Eikenes, M.; Militz, H. Screening of properties of modified chitosan-treated wood. Wood Mater. Sci. Eng. 2006, 1, 59–68. [Google Scholar] [CrossRef]
- Letullier, C.; Manduchet, A.; Dlalah, N.; Hugou, M.; Georgé, S.; Sforcin, J.M.; Cardinault, N. Comparison of the antibacterial efficiency of propolis samples from different botanical and geographic origins with and without standardization. J. Apic. Res. 2020, 59, 19–24. [Google Scholar] [CrossRef]
- Popova, M.; Giannopoulou, E.; Skalicka-Woźniak, K.; Graikou, K.; Widelski, J.; Bankova, V.; Kalofonos, H.; Sivolapenko, G.; Gaweł-Bȩben, K.; Antosiewicz, B.; et al. Characterization and biological evaluation of propolis from Poland. Molecules 2017, 22, 1159. [Google Scholar] [CrossRef]
- Kwon, M.J.; Shin, H.M.; Perumalsamy, H.; Wang, X.; Ahn, Y.J. Antiviral effects and possible mechanisms of action of constituents from Brazilian propolis and related compounds. J. Apic. Res. 2019, 0, 1–13. [Google Scholar] [CrossRef]
- Akcay, C.; Birinci, E.; Birinci, C.; Kolayli, S. Durability of wood treated with propolis. BioResources 2020, 15, 1547–1562. [Google Scholar]
- Woźniak, M.; Kwaśniewska-Sip, P.; Waśkiewicz, A.; Cofta, G.; Ratajczak, I. The possibility of propolis extract application in wood protection. Forests 2020, 11, 465. [Google Scholar] [CrossRef] [Green Version]
- Silva-Castro, I.; Casados-Sanz, M.; Alonso-Cortés, A.L.; Martín-Ramos, P.; Martín-Gil, J.; Acuña-Rello, L. Chitosan-based coatings to prevent the decay of Populus spp. Wood caused by Trametes Versicolor. Coatings 2018, 8, 415. [Google Scholar] [CrossRef] [Green Version]
- Casado-Sanz, M.M.; Silva-Castro, I.; Ponce-Herrero, L.; Martín-Ramos, P.; Martín-Gil, J.; Acuña-Rello, L. White-rot fungi control on Populus spp. wood by pressure treatments with silver nanoparticles, chitosan oligomers and propolis. Forests 2019, 10, 885. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, M.; Kwaśniewska-Sip, P.; Krueger, M.; Roszyk, E.; Ratajczak, I. Chemical, biological and mechanical characterization of wood treated with propolis extract and silicon compounds. Forests 2020, 11, 907. [Google Scholar] [CrossRef]
- Ratajczak, I.; Woźniak, M.; Kwaśniewska-Sip, P.; Szentner, K.; Cofta, G.; Mazela, B. Chemical characterization of wood treated with a formulation based on propolis, caffeine and organosilanes. Eur. J. Wood Wood Prod. 2018, 76, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Hindeleh, A.M.; Johnson, D.J. The resolution of multipeak data in fibre science. J. Phys. D. Appl. Phys. 1971, 4, 259. [Google Scholar] [CrossRef]
- Rabiej, S. A comparison of two X-ray diffraction procedures for crystallinity determination. Eur. Polym. J. 1991, 27, 947–954. [Google Scholar] [CrossRef]
- Polish Committee for Standarization. PN EN ISO 846:2019 Plastics Evaluation of the Action of Microorganisms; Polish Committee for Standarization: Warsaw, Poland, 2019. [Google Scholar]
- Turner Jones, A.; Aizlewood, M.; Beckett, D.R. Crystalline forms of isotactic polypropylene. Macromol. Chem. Phys. 1964, 75, 134–158. [Google Scholar] [CrossRef]
- Polish Committee for Standarization. PN-EN ISO 527-3:2019-01. Plastics Determination of Tensile Properties Part 3: Test Conditions for Films and Plates; Polish Committee for Standarization: Warsaw, Poland, 2019. [Google Scholar]
- Sèbe, G.; Tingaut, P.; Safou-Tchiama, R.; Pétraud, M.; Grelier, S.; De Jéso, B. Chemical reaction of maritime pine sapwood (Pinus pinaster Soland) with alkoxysilane molecules: A study of chemical pathways. Holzforschung 2004, 58, 511–518. [Google Scholar] [CrossRef]
- Tshabalala, M.A.; Kingshott, P.; VanLandingham, M.R.; Plackett, D. Surface chemistry and moisture sorption properties of wood coated with multifunctional alkoxysilanes by sol-gel process. J. Appl. Polym. Sci. 2003, 88, 2828–2841. [Google Scholar] [CrossRef]
- Tjeerdsma, B.F.; Militz, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh und Werkst. 2005, 63, 102–111. [Google Scholar] [CrossRef]
- Tingaut, P.; Weigenand, O.; Mai, C.; Militz, H.; Sèbe, G. Chemical reaction of alkoxysilane molecules in wood modified with silanol groups. Holzforschung 2006, 60, 271–277. [Google Scholar] [CrossRef]
- Ratajczak, I.; Woźniak, M.; Szentner, K.; Babicka, M.; Jenczyk, J.; Mazela, B. Aminosilane binding to wood substance through an alkyd resin. J. Wood Chem. Technol. 2020, 40, 73–79. [Google Scholar] [CrossRef]
- Abdelmouleh, M.; Boufi, S.; Belgacem, M.N.; Duarte, A.P.; Ben Salah, A.; Gandini, A. Modification of cellulosic fibres with functionalised silanes: Development of surface properties. Int. J. Adhes. Adhes. 2004, 24, 43–54. [Google Scholar] [CrossRef]
- Guzzon, R.; Widmann, G.; Bertoldi, D.; Nardin, T.; Callone, E.; Nicolini, G.; Larcher, R. Silicification of wood adopted for barrel production using pure silicon alkoxides in gas phase to avoid microbial colonisation. Food Microbiol. 2015, 45, 135–146. [Google Scholar] [CrossRef]
- Oldertrøen, K.; H-Kittikun, A.; Aam, B.B.; Larnøy, E. Resistance of rubberwood (Hevea brasiliensis) treated with chitosan or silane against surface molds. Eur. J. Wood Wood Prod. 2017, 75, 101–112. [Google Scholar] [CrossRef]
- Ekeberg, D.; Flæte, P.O.; Eikenes, M.; Fongen, M.; Naess-Andresen, C.F. Qualitative and quantitative determination of extractives in heartwood of Scots pine (Pinus sylvestris L.) by gas chromatography. J. Chromatogr. A 2006, 1109, 267–272. [Google Scholar] [CrossRef]
- Mai, C.; Militz, H. Modification of wood with silicon compounds. Treatment systems based on organic silicon compounds A review. Wood Sci. Technol. 2004, 37, 453–461. [Google Scholar] [CrossRef]
- Reinprecht, L.; Grznárik, T. Biological durability of Scots pine (Pinus sylvestris L.) sapwood modified with selected organo-silanes. Wood Res. 2015, 60, 687–696. [Google Scholar]
- Reinprecht, L.; Vacek, V.; Grznárik, T. Enhanced fungal resistance of Scots pine (Pinus sylvestris L.) sapwood by treatment with methyltrimethoxysilane and benzalkoniumchloride. Eur. J. Wood Wood Prod. 2017, 75, 817–824. [Google Scholar] [CrossRef]
- Ghosh, S.C.; Militz, H.; Mai, C. The efficacy of commercial silicones against blue strain and mould fungi in wood. Eur. J. Wood Wood Prod. 2009, 67, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Quiroga, E.N.; Sampietro, D.A.; Soberón, J.R.; Sgariglia, M.A.; Vattuone, M.A. Propolis from the northwest of Argentina as a source of antifungal principles. J. Appl. Microbiol. 2006, 101, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Boisard, S.; Le Ray, A.M.; Landreau, A.; Kempf, M.; Cassisa, V.; Flurin, C.; Richomme, P. Antifungal and antibacterial metabolites from a French poplar type propolis. Evid. Based Complement. Altern. Med. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Z.; Peng, L.T.; Su, X.J.; Chen, F.; Cheng, Y.J.; Fan, G.; Pan, S.Y. Bioassay-guided isolation and identification of antifungal components from propolis against Penicillium Italicum. Food Chem. 2011, 127, 210–215. [Google Scholar] [CrossRef]
- Garedew, A.; Schmolz, E.; Lamprecht, I. Microbiological and calorimetric investigations on the antimicrobial actions of different propolis extracts: An in vitro approach. Thermochim. Acta 2004, 422, 115–124. [Google Scholar] [CrossRef]
- Woźniak, M.; Mrówczyńska, L.; Kwaśniewska-Sip, P.; Waśkiewicz, A.; Nowak, P.; Ratajczak, I. Effect of the solvent on propolis phenolic profile and its antifungal, antioxidant, and in vitro cytoprotective activity in human erythrocytes under oxidative stress. Molecules 2020, 25, 4266. [Google Scholar] [CrossRef]
- Zafeiropoulos, N.E.; Baillie, C.A.; Matthews, F.L. Study of transcrystallinity and its effect on the interface in flax fibre reinforced composite materials. Compos. Part A Appl. Sci. Manuf. 2001, 32, 525–543. [Google Scholar] [CrossRef]
- Borysiak, S. Influence of cellulose polymorphs on the polypropylene crystallization. J. Therm. Anal. Calorim. 2013, 113, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Varga, J. Melting memory effect of the B-modification of polypropylene. J. Therm. Anal. 1986, 31, 165–172. [Google Scholar] [CrossRef]
- Cho, K.; Saheb, D.N.; Yang, H.; Kang, B.I.; Kim, J.; Lee, S.S. Memory effect of locally ordered α-phase in the melting and phase transformation behavior of β-isotactic polypropylene. Polymer (Guildf) 2003, 44, 4053–4059. [Google Scholar] [CrossRef]
- Lezak, E.; Bartczak, Z.; Galeski, A. Plastic deformation behavior of β-phase isotactic polypropylene in plane-strain compression at room temperature. Polymer (Guildf) 2006, 47, 8562–8574. [Google Scholar] [CrossRef]
- Menyhárd, A.; Dora, G.; Horváth, Z.; Faludi, G.; Varga, J. Kinetics of competitive crystallization of β- and α- modifications in β-nucleated iPP studied by isothermal stepwise crystallization technique. J. Therm. Anal. Calorim. 2012, 108, 613–620. [Google Scholar] [CrossRef] [Green Version]
- Joseph, P.V.; Mathew, G.; Joseph, K.; Groeninckx, G.; Thomas, S. Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2003, 34, 275–290. [Google Scholar] [CrossRef]
- Nygård, P.; Tanem, B.S.; Karlsen, T.; Brachet, P.; Leinsvang, B. Extrusion-based wood fibre-PP composites: Wood powder and pelletized wood fibres a comparative study. Compos. Sci. Technol. 2008, 68, 3418–3424. [Google Scholar] [CrossRef]
- Leluk, K.; Frąckowiak, S.; Ludwiczak, J.; Rydzkowski, T.; Thakur, V.K. The impact of filler geometry on polylactic acid-based sustainable polymer composites. Molecules 2021, 26, 149. [Google Scholar] [CrossRef] [PubMed]
- Michalska-Pożoga, I.; Rydzkowski, T. The effect extrusion conditions for a screw-disc plasticizing system on the mechanical properties of wood-polymer composites (WPC). Polimery 2016, 3, 202–210. [Google Scholar] [CrossRef]
- Tordjeman, P.; Robert, C.; Marin, G.; Gerard, P. The effect of α, β crystalline structure on the mechanical properties of polypropylene. Eur. Phys. J. 2001, 4, 459–465. [Google Scholar] [CrossRef]
- Varga, J. β-modification of isotactic polypropylene: Preparation, structure, processing, properties, and application. J. Macromol. Sci. Part B Phys. 2002, 41, 1121–1171. [Google Scholar] [CrossRef]
Index | Degree of Sample Colonisation |
---|---|
−1 | No sign of mycelium growth on sample, there is a zone of inhibition on the medium between the sample and mycelium |
0 | No sign of mycelium growth on sample, there is no zone of inhibition on the medium between the sample and mycelium |
1 | Less than 33% of the sample surface colonised by the tested fungus mycelium |
2 | More than 66% of the sample surface colonised by the tested fungus mycelium |
Modified Wood | Silicon Concentration (mg/kg) |
---|---|
TEOS/VTMOS | 183.5 ± 4.6 |
TEOS/OTEOS | 186.0 ± 3.8 |
EEP-TEOS/VTMOS | 234.1 ± 7.0 |
EEP-TEOS/OTEOS | 284.4 ± 2.7 |
Wood Filler | Xc (%) |
---|---|
Wood | 50 |
EEP | 56 |
TEOS/OTEOS | 58 |
TEOS/VTMOS | 58 |
EEP-TEOS/OTEOS | 60 |
EEP-TEOS/VTMOS | 59 |
Fungal Strain | Modified Wood | |||||
---|---|---|---|---|---|---|
TEOS/VTMOS | TEOS/OTEOS | EEP | EEP-TEOS/VTMOS | EEP-TEOS/OTEOS | CONTROL | |
A. niger | 2 | 1 | 0 | 0 | 0 | 2 |
Ch. globosum | 2 | 2 | 1 | 0 | 0 | 2 |
P. funiculosum | 2 | 2 | 0 | 0 | 0 | 2 |
P. variotii | 2 | 2 | 1 | 0 | 0 | 2 |
T. virens | 1 | 1 | 0 | 0 | 0 | 2 |
U. atrum | 2 | 2 | 0 | 0 | 0 | 2 |
Composites | Crystallization Temperature Tc(°C) | Half-Time of Crystallization t0.5(min) |
---|---|---|
PP | 113.0 | 2.7 |
PP + wood | 115.0 | 1.85 |
PP + EEP | 113.5 | 2.35 |
PP + EEP-TEOS/OTEOS | 122.5 | 1.5 |
PP + EEP-TEOS/VTMOS | 119.5 | 1.7 |
Composites | Layer Growth Rate of TCL μm/min |
---|---|
PP + wood | 5.3 |
PP + EEP | 3.2 |
PP + EEP-TEOS/OTEOS | 6.2 |
PP + EEP-TEOS/VTMOS | 4.3 |
Composites | Content of the β-PP Form (%) |
---|---|
PP | 7 |
PP + wood | 28 |
PP + EEP | 23 |
PP + EEP-TEOS/OTEOS | 38 |
PP + EEP-TEOS/VTMOS | 32 |
Composites | Tensile Strength (MPa) | Young Modulus (GPa) | Elongation at Break (%) | Impact Strength (kJ/m2) |
---|---|---|---|---|
PP | 30.8 ± 0.09 | 1.24 ± 0.11 | 1.24 ± 0.11 | 56.1 ± 0.55 |
PP + Wood | 32.4 ± 0.32 | 2.24 ± 0.18 | 2.24 ± 0.18 | 22.7 ± 0.37 |
PP + EEP | 31.6 ± 0.35 | 2.19 ± 0.26 | 2.19 ± 0.26 | 24.2 ± 0.42 |
PP + EEP-TEOS/OTEOS | 38.2 ± 0.29 | 2.46 ± 0.19 | 2.46 ± 0.19 | 39.6 ± 0.33 |
PP + EEP-TEOS/VTMOS | 35.9 ± 0.43 | 2.38 ± 0.23 | 2.38 ± 0.23 | 31.9 ± 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odalanowska, M.; Woźniak, M.; Ratajczak, I.; Zielińska, D.; Cofta, G.; Borysiak, S. Propolis and Organosilanes as Innovative Hybrid Modifiers in Wood-Based Polymer Composites. Materials 2021, 14, 464. https://doi.org/10.3390/ma14020464
Odalanowska M, Woźniak M, Ratajczak I, Zielińska D, Cofta G, Borysiak S. Propolis and Organosilanes as Innovative Hybrid Modifiers in Wood-Based Polymer Composites. Materials. 2021; 14(2):464. https://doi.org/10.3390/ma14020464
Chicago/Turabian StyleOdalanowska, Majka, Magdalena Woźniak, Izabela Ratajczak, Daria Zielińska, Grzegorz Cofta, and Sławomir Borysiak. 2021. "Propolis and Organosilanes as Innovative Hybrid Modifiers in Wood-Based Polymer Composites" Materials 14, no. 2: 464. https://doi.org/10.3390/ma14020464
APA StyleOdalanowska, M., Woźniak, M., Ratajczak, I., Zielińska, D., Cofta, G., & Borysiak, S. (2021). Propolis and Organosilanes as Innovative Hybrid Modifiers in Wood-Based Polymer Composites. Materials, 14(2), 464. https://doi.org/10.3390/ma14020464