Investigation of Electromechanical Properties on 3-D Printed Piezoelectric Composite Scaffold Structures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Rheological Analysis of PZT and BT Feedstock
3.2. Comparison of Open and Offset Printed Scaffold Structures with Dense Reference Sample
3.3. PZT-Epoxy Resin Scaffold Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaffe, H. Piezoelectric Ceramics. J. Am. Ceram. Soc. 1958, 41, 494–498. [Google Scholar] [CrossRef]
- Newnham, R.E.; Skinner, D.P.; Cross, L.E. Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 1978, 13, 525–536. [Google Scholar] [CrossRef]
- Skinner, D.P.; Newnham, R.E.; Cross, L.E. Flexible composite transducers. Mater. Res. Bull. 1978, 13, 599–607. [Google Scholar] [CrossRef]
- Newnham, R.E.; Bowen, L.J.; Klicker, K.A.; Cross, L.E. Composite piezoelectric transducers. Mater. Des. 1980, 2, 93–106. [Google Scholar] [CrossRef]
- Uchino, K. Piezoelectric Composite Materials. In Advanced Piezoelectric Materials, 2nd ed.; Uchino, K., Ed.; Woodhead Publishing: Duxford, UK, 2017; pp. 353–382. [Google Scholar]
- Akdogan, E.K.; Allahverdi, M.; Safari, A. Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 746–775. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, J.; Liu, D.; Zhang, Z. Novel 1–3 (K,Na)NbO3-based ceramic/epoxy composites with large thickness-mode electromechanical coupling coefficient and good temperature stability. Ceram. Int. 2021, 47, 4643–4647. [Google Scholar] [CrossRef]
- Topolov, V.Y.; Bowen, C.R.; Isaeva, A.N. Anisotropy Factors and Electromechanical Coupling in Lead-Free 1–3-Type Composites. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1278–1286. [Google Scholar] [CrossRef]
- Bowen, C.R.; Topolov, V.Y.; Zhang, Y.; Panich, A.A. 1-3-Type Composites Based on Ferroelectrics: Electromechanical Coupling, Figures of Merit, and Piezotechnical Energy-Harvesting Applications. Energy Technol. 2018, 6, 813–828. [Google Scholar] [CrossRef]
- Eltouby, P.; Shyha, I.; Li, C.; Khaliq, J. Factors affecting the piezoelectric performance of ceramic-polymer composites: A comprehensive review. Ceram. Int. 2021, 47, 17813–17825. [Google Scholar] [CrossRef]
- Clemens, F.J.; Heiber, J.; Graule, T.; Piechowiak, M.; Kozielski, L.; Czekaj, D. Microstructural and electromechanical comparison of different piezoelectric PZT based single fibers and their 1–3 composites. In Proceedings of the 2010 IEEE International Symposium on the Applications of Ferroelectrics (ISAF), Edinburgh, Scotland, 9 August 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Sebastian, T.; Lusiola, T.; Clemens, F.J. Ferroelectric hybrid fibers to develop flexible sensors for shape sensing of smart textiles and soft condensed matter bodies. Smart Mater. Struct. 2017, 26, 045003. [Google Scholar] [CrossRef]
- Klicker, K.A.; Schulze, W.A.; Biggers, J.V. Piezoelectric Composites with 3–1 Connectivity and a Foamed Polyurethane Matrix. J. Am. Ceram. Soc. 1982, 65, C-208–C-210. [Google Scholar] [CrossRef]
- Bowen, L.J.; French, K.W. Fabrication of piezoelectric ceramic/polymer composites by injection molding. In Proceedings of the ISAF ’92: Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics, Greenville, SC, USA, 30 August–2 September 1992; pp. 160–163. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bao, Y.; Zhang, D.; Bowen, C.R. Porous PZT Ceramics with Aligned Pore Channels for Energy Harvesting Applications. J. Am. Ceram. Soc. 2015, 98, 2980–2983. [Google Scholar] [CrossRef] [Green Version]
- Kara, H.; Perry, A.; Stevens, R.; Bowen, C.R. Interpenetrating PZT/polymer composites for hydrophones: Models and experiments. Ferroelectrics 2002, 265, 317–332. [Google Scholar] [CrossRef]
- Perry, A.; Bowen, C.R.; Kara, H.; Mahon, S. PZT—Polymer Composites for Hydrophones: Production and Modelling. Key Eng. Mater. 2001, 206–213, 1505–1508. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, X.; Shang, Y.; Xiong, K.; Xu, Z.; Guo, R.; Cai, S.; Zheng, C. Dense ceramics with complex shape fabricated by 3D printing: A review. J. Adv. Ceram. 2021, 10, 195–218. [Google Scholar] [CrossRef]
- Safari, A.; Allahverdi, M.; Akdogan, E.K. Solid freeform fabrication of piezoelectric sensors and actuators. J. Mater. Sci. 2006, 41, 177–198. [Google Scholar] [CrossRef]
- Topolov, V.Y.; Bowen, C.R. Effective Electromechanical Properties in Piezo-composites. In Electromechanical Properties in Composite Based on Ferroelectrics, 1st ed.; Topolov, V.Y., Bowen, C.R., Eds.; Springer: London, UK, 2009; pp. 11–41. [Google Scholar]
- Rittenmyer, K.; Shrout, T.; Schulze, W.A.; Newnham, R.E. Piezoelectric 3–3 composites. Ferroelectrics 1982, 41, 189–195. [Google Scholar] [CrossRef]
- Bowen, C.R.; Topolov, V.Y. Piezoelectric sensitivity of PbTiO3-based ceramic/polymer composites with 0–3 and 3–3 connectivity. Acta Mater. 2003, 51, 4965–4976. [Google Scholar] [CrossRef]
- Sessler, G.M.; Hillenbrand, J. Figure of merit of piezoelectret transducers for pulse-echo or transmit-receive systems for airborne ultrasound. Appl. Phys. Lett. 2013, 103, 122904. [Google Scholar] [CrossRef]
- Ngoma, J.B.; Cavaille, J.Y.; Paletto, J.; Perez, J.; Macchi, F. Dielectric and piezoelectric properties of copolymer-ferroelectric composite. Ferroelectrics 1990, 109, 205–210. [Google Scholar] [CrossRef]
- Smith, W.A.; Auld, B.A. Modeling 1-3 composite piezoelectrics: Thickness-mode oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1991, 38, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Gorjan, L.; Tonello, R.; Sebastian, T.; Colombo, P.; Clemens, F.J. Fused deposition modeling of mullite structures from a preceramic polymer and γ-alumina. J. Eur. Ceram. Soc. 2019, 39, 2463–2471. [Google Scholar] [CrossRef]
- Gorjan, L.; Galusca, C.; Sami, M.; Sebastian, T.; Clemens, F.J. Effect of stearic acid on rheological properties and printability of ethylene vinyl acetate-based feedstocks for fused filament fabrication of alumina. Addit. Manuf. 2020, 36, 101391. [Google Scholar] [CrossRef]
- Bach, M.; Sebastian, T.; Melnykowycz, M.; Lusiola, T.; Scharf, D.; Clemens, F.J. Additive Manufacturing of Piezoelectric 3-3 Composite Structures. In Industrializing Additive Manufacturing, Proceedings of Additive Manufacturing in Products and Applications—AMPA2017; Meboldt, M., Klahn, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 93–103. [Google Scholar]
- Bortolani, F.; Michen, M.I.; Graule, T.; Clemens, F.J. Small and large signal ferroelectric properties of single lead zirconium titanate fibers. J. Intell. Mater. Syst. Struct. 2014, 26, 865–871. [Google Scholar] [CrossRef]
- Lusiola, T.; Scharf, D.; Graule, T.; Clemens, F.J. Low shear compounding process for thermoplastic fabrication of ferroelectric lead-free fibres. J. Eur. Ceram. Soc. 2014, 34, 2265–2274. [Google Scholar] [CrossRef]
- Lusiola, T.; Hussain, A.; Kim, M.H.; Graule, T.; Clemens, F.J. Ferroelectric KNNT Fibers by Thermoplastic Extrusion Process: Microstructure and Electromechanical Characterization. Actuators 2015, 4, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Gheorghiu, F.; Padurariu, L.; Airimioaei, M.; Curecheriu, L.; Ciomaga, C.; Padurariu, C.; Galassi, C.; Mitoseriu, L. Porosity-dependent properties of Nb-doped Pb(Zr,Ti)O3 ceramics. J. Am. Ceram. Soc. 2017, 100, 647–658. [Google Scholar] [CrossRef]
- Lewis, R.W.C.; Dent, A.C.E.; Stevens, R.; Bowen, C.R. Microstructural modelling of the polarization and properties of porous ferroelectrics. Smart Mater. Struct. 2011, 20, 85002. [Google Scholar] [CrossRef]
- Getman, I.; Lopatin, S. Theoretical and experimental investigation of porous PZT ceramics. Ferroelectrics 1996, 186, 301–304. [Google Scholar] [CrossRef]
- Roscow, J.I.; Lewis, R.W.C.; Taylor, J.; Bowen, C.R. Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit. Acta Mater. 2017, 128, 207–217. [Google Scholar] [CrossRef]
- Zhang, Y.; Roscow, J.; Lewis, R.; Khanbareh, H.; Topolov, V.Y.; Xie, M.; Bowen, C.R. Understanding the effect of porosity on the polarisation-field response of ferroelectric materials. Acta Mater. 2018, 154, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Olyaei, N.S.; Mohebi, M.M.; Kaveh, R. Directional properties of ordered 3-3 piezocomposites fabricated by sacrificial template. J. Am. Ceram. Soc. 2017, 100, 1432–1439. [Google Scholar] [CrossRef]
- Nagata, K.; Igarashi, H.; Okazaki, K.; Bradt, R.C. Properties of an Interconnected Porous Pb(Zr, Ti)O3 Ceramic. Jpn. J. Appl. Phys. 1980, 19, L37–L40. [Google Scholar] [CrossRef]
- Kakimoto, K.-I.; Imura, T.; Fukui, Y.; Kuno, M.; Yamagiwa, K.; Mitsuoka, T.; Ohbayashi, K. Processing of Piezoelectric (Li,Na,K)NbO3 Porous Ceramics and (Li,Na,K)NbO3/KNbO3 Composites. Jpn. J. Appl. Phys. 2007, 46, 7089–7093. [Google Scholar] [CrossRef]
- Stuber, V.L.; Deutz, D.; Bennett, J.; Cannell, D.; De Leeuw, D.M.; Van Der Zwaag, S.; Groen, P. Flexible Lead-Free Piezoelectric Composite Materials for Energy Harvesting Applications. Energy Technol. 2019, 7, 177–185. [Google Scholar] [CrossRef]
- Van den Ende, D.A.; Bory, B.F.; Groen, W.A.; van der Zwaag, S. Improving the d33 and g33 properties of 0-3 piezoelectric composites by dielectrophoresis. J. Appl. Phys. 2010, 107, 24107. [Google Scholar] [CrossRef]
- Bowen, C.R.; Newnham, R.E.; Randall, C.A. Dielectric properties of dielectrophoretically assembled particulate-polymer composites. J. Mater. Res. 1998, 13, 205–210. [Google Scholar] [CrossRef]
- Yamada, T.; Ueda, T.; Kitayama, T. Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 1982, 53, 4328–4332. [Google Scholar] [CrossRef]
PZT (1.5 kV/mm) | BT (1 kV/mm) | |||||
---|---|---|---|---|---|---|
Pellet | Scaffold | Offset | Pellet | Scaffold | Offset | |
Piezoelectric constant d33 (pm/V) | 384 | 202 | 273 | 142 | 107 | 127 |
Permittivity εr | 1405 | 297 | 1177 | 3657 | 906 | 1372 |
Strain (%) | 0.36 | 0.19 | 0.18 | 0.04 | 0.04 | 0.04 |
Remnant polarization Pr (μC/cm2) | 29.7 | 6.2 | 25.5 | 6.2 | 2.9 | 3.5 |
Piezoelectric voltage constant g33 (mVm/N) | 31 | 77 | 26 | 4 | 13 | 10 |
FOM (d33 × g33 (fm2/N) | 11904 | 15554 | 7098 | 568 | 1391 | 1270 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebastian, T.; Bach, M.; Geiger, A.; Lusiola, T.; Kozielski, L.; Clemens, F. Investigation of Electromechanical Properties on 3-D Printed Piezoelectric Composite Scaffold Structures. Materials 2021, 14, 5927. https://doi.org/10.3390/ma14205927
Sebastian T, Bach M, Geiger A, Lusiola T, Kozielski L, Clemens F. Investigation of Electromechanical Properties on 3-D Printed Piezoelectric Composite Scaffold Structures. Materials. 2021; 14(20):5927. https://doi.org/10.3390/ma14205927
Chicago/Turabian StyleSebastian, Tutu, Miriam Bach, Andreas Geiger, Tony Lusiola, Lucjan Kozielski, and Frank Clemens. 2021. "Investigation of Electromechanical Properties on 3-D Printed Piezoelectric Composite Scaffold Structures" Materials 14, no. 20: 5927. https://doi.org/10.3390/ma14205927
APA StyleSebastian, T., Bach, M., Geiger, A., Lusiola, T., Kozielski, L., & Clemens, F. (2021). Investigation of Electromechanical Properties on 3-D Printed Piezoelectric Composite Scaffold Structures. Materials, 14(20), 5927. https://doi.org/10.3390/ma14205927