Dielectric and Electric Properties of Ba0.996La0.004Ti0.999O3 Ceramics Doped with Europium and Hafnium Ions
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kinoshita, K.; Yamaji, A. Grain-size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 1976, 47, 371–373. [Google Scholar] [CrossRef]
- Hiramatsu, T.; Tamura, T.; Wada, N.; Tamura, H.; Sakabe, Y. Effects of grain boundary on dielectric properties in fine-grained BaTiO3 ceramics. Mater. Sci. Eng. B. 2005, 120, 55–58. [Google Scholar] [CrossRef]
- Bochenek, D. Magnetic and ferroelectric properties of PbFe1/2Nb1/2O3 synthesized by a solution precipitation method. J. Alloys Compd. 2010, 504, 508–513. [Google Scholar] [CrossRef]
- Bochenek, D.; Surowiak, Z. Influence of admixtures on the properties of biferroic Pb(Fe0.5Nb0.5)O3 ceramics. Phys. Status Solidi A 2009, 206, 2857–2865. [Google Scholar] [CrossRef]
- Busca, G.; Buscaglia, V.; Leoni, M.; Nanni, P. Solid-State and Surface Spectroscopic Characterization of BaTiO3 Fine Powders. Chem. Mater. 1994, 6, 955–961. [Google Scholar] [CrossRef]
- Xu, Y. Ferroelectric Materials and Their Applications, 1st ed.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Tang, Y.F.; Wu, C.; Wu, Z.X.; Hu, L.; Zhang, W.; Zhao, K. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Sci. Rep. 2017, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Yun, W.S.; Urban, J.J.; Gu, Q.; Park, H. Ferroelectric properties of individual barium Titanate nanowires investigated by scanned probe microscopy. Nano Lett. 2002, 2, 447. [Google Scholar] [CrossRef]
- Dubourdieu, C.; Bruley, J.; Arruda, T.M.; Posadas, A.; Jordan-Sweet, J.; Frank, M.M.; Cartier, E.; Frank, D.J.; Kalinin, S.V.; Demkov, A.A.; et al. Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode. Nat. Nanotechnol. 2013, 8, 748. [Google Scholar] [CrossRef] [PubMed]
- Beck, H.P.; Eiser, W.; Haberkorn, R. Pitfalls in the synthesis of nanoscaled perovskite type compounds. Part I: Influence of different sol–gel preparation methods and characterization of nanoscaled BaTiO3. J. Eur. Ceram. Soc. 2001, 21, 687. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.S.; Liang, J.G.; Wang, C.; Cho, M.Y.; Oh, J.M.; Kim, N.Y. Inter-digital capacitors with aerosol-deposited high-K dielectric layer for highest capacitance value in capacitive super-sensing applications. Sci. Rep. 2019, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Arshad, M.; Du, H.; Javed, M.S.; Maqsood, A.; Ashraf, I.; Hussain, S.; Ma, W.; Ran, H. Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics. Ceram. Int. 2020, 46, 2238. [Google Scholar] [CrossRef]
- Patil, D.R.; Lokare, S.A.; Devan, R.S.; Chougule, S.S.; Kanamadi, C.M.; Kolekar, Y.D.; Chougule, B.K. Studies on electrical and dielectric properties of Ba1−xSrxTiO3. Mater. Chem. Phys. 2007, 104, 15. [Google Scholar] [CrossRef]
- Bai, Y.; Han, X.; Ding, K.; Qiao, L. Combined effects of diffuse phase transition and microstructure on the electrocaloric effect in Ba1−xSrxTiO3 ceramics. Appl. Phys. Lett. 2013, 103, 162902. [Google Scholar] [CrossRef]
- Khushbu, P.; Kumar, V.; Kumar, J. Effect of co-substitution of Sm3+ and Fe3+ ions on structural and dielectric properties of BaTiO3 ceramics. Alloys. Compd. 2017, 17, 33473–33474. [Google Scholar] [CrossRef]
- Buscaglia, M.T.; Viviani, M.; Buscaglia, V.; Bottino, C.; Nanni, P. Incorporation of Er3+ into BaTiO3. J. Am. Ceram. Soc. 2002, 85, 1569–1575. [Google Scholar] [CrossRef]
- Makovec, D.; Samardžija, Z.; Drofenik, M. Solid Solubility of Holmium, Yttrium, and Dysprosium in BaTiO3. J. Am. Ceram. Soc. 2004, 87, 1324–1329. [Google Scholar] [CrossRef]
- Bobade, S.M.; Gopalan, P.; Choi, D.-K. Dielectric Properties of La3+ at A Site and Al3+ and Ga3+ Doped at B Site in BaTiO3. Jpn. J. Appl. Phys. 2009, 48, 041402. [Google Scholar] [CrossRef]
- Cai, W.; Fu, C.L.; Lin, Z.B.; Deng, X.L.; Jiang, W.H. Influence of lanthanum on microstructure and dielectric properties of barium titanate ceramics by solid state reaction. Adv. Mater. Res. 2012, 412, 275–279. [Google Scholar] [CrossRef]
- Mangaiyarkkarasi, J.; Saravanan, R.; Ismail, M.M. Chemical bonding and charge density distribution analysis of undoped and lanthanum doped barium titanate ceramics. J. Chem. Sci. 2016, 128, 1913. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shi, S.; Dong, Q.; Xu, C.; Zhu, S.; Zhang, X.; Chow, Y.; Wang, X.; Zhang, G.; Zhu, L.; et al. Electrospun lanthanum-doped barium titanate ceramic fibers with excellent dielectric performance. Mater. Charact. 2021, 172, 110859. [Google Scholar] [CrossRef]
- Morrison, F.D.; Coats, A.M.; Sinclair, D.C.; West, A.R. Charge Compensation Mechanisms in La-Doped BaTiO3. J. Electroceramics 2001, 6, 219–232. [Google Scholar] [CrossRef]
- Ianculescu, A.; Mocanu, Z.V.; Curecheriu, L.P.; Mitoseriu, L.; Padurariu, L.; Trusca, R. Dielectric and Tunability Properties of La-doped BaTiO3 ceramics. J. Alloys Compd. 2011, 509, 10040–10049. [Google Scholar] [CrossRef]
- Mancić, D.; Paunović, V.; Vijatović, M.; Stojanović, B.; Zivković, L. Electrical Characterization and Impedance Response of Lanthanum Doped Barium Titanate Ceramics. Sci. Sinter. 2008, 40, 283–294. [Google Scholar] [CrossRef]
- Wodecka-Duś, B.; Adamczyk-Habrajska, M.; Goryczka, T.; Bochenek, D. Chemical and Physical Properties of the BLT4 Ultra Capacitor—A Suitable Material for Ultracapacitors. Materials 2020, 13, 659. [Google Scholar] [CrossRef] [Green Version]
- Garbarz-Glos, B.; Bąk, W.; Molak, A.; Kalvane, A. Microstructure, calorimetric and dielectric investigation of hafnium doped barium titanate ceramics. Phase Transit. 2013, 86, 917–925. [Google Scholar] [CrossRef]
- Rath, M.K.; Pradhan, G.K.; Pandey, B.; Verma, H.C.; Roul, B.K.; Anand, S. Synthesis, characterization and dielectric properties of europium-doped barium titanate nanopowders. Mater. Lett. 2008, 62, 2136–2139. [Google Scholar] [CrossRef]
- Morrison, F.D.; Sinclair, D.C.; West, A.R. Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. J. Appl. Phys. 1999, 86, 6355. [Google Scholar] [CrossRef]
- Kuwabara, M.; Matsuda, H.; Kurata, N.; Matsuyama, E. Shift of the Curie point of barium titanate ceramics with sintering temperature. J. Am. Ceram. Soc. 1997, 80, 2590–2596. [Google Scholar] [CrossRef]
- Vijatović Petrović, M.M.; Bobić, J.D.; Ramoska, T.; Banys, J.; Stojanović, B.D. Electrical properties of lanthanum doped barium titanate ceramics. Mater. Charact. 2011, 62, 1000. [Google Scholar] [CrossRef]
- Devi, S.; Jha, A.K. Structural, dielectric and ferroelectric properties of tungsten substituted barium titanate ceramics. Asian J. Chem. 2009, 21, 117–124. [Google Scholar]
- Yu, Z.; Ang, C.; Guo, R.; Bhalla, A.S. Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3 Ceramics. J. Appl. Phys. 2002, 92, 2655. [Google Scholar] [CrossRef]
- Mancić, D.; Paunović, V.; Petrusic, Z.; Radmanovic, M.; Zivkovic, L. Application of Impedance Spectroscopy for Electrical Characterization of Ceramics Materials. Electronics 2009, 13, 11–17. [Google Scholar]
- Kathayat, K.; Panigrahi, A.; Pandey, A.; Kar, S. Characterization of electrical behavior of Ba5HoTi3V7O30 ceramic using impedance analysis. Mater. Sci. Appl. 2012, 3, 390–397. [Google Scholar]
- Parida, B.N.; Das, P.R.; Padhee, R.; Choudhary, R.N.P. Synthesis and characterization of a tungsten bronze ferroelectric oxide. Adv. Mater. Lett. 2012, 3, 231–238. [Google Scholar] [CrossRef]
- Komornicki, S.; Radecka, M.; Rekas, M. Frequency-dependent electrical properties in the system SnO2-TiO2. J. Mater. Sci. 2001, 12, 11–16. [Google Scholar] [CrossRef]
- Biendicho, J.J.; West, A.R. Impedance characterisation of LiFePO4 ceramics. Solid State Ion. 2012, 226, 41. [Google Scholar] [CrossRef]
- Amar Nath, K.; Prasad, K.; Chandra, K.P.; Kulkarni, A.R. Impedance and a.c. conductivity studies of Ba(Pr1/2Nb1/2)O3 ceramic. Bull. Mater. Sci. 2013, 36, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Abrantes, J.C.C.; Labrincha, J.A.; Frade, J.R. An alternative representation of impedance spectra of ceramics. Mater. Res. Bull. 2000, 35, 727–740. [Google Scholar] [CrossRef]
Sample | Density [g/cm3] | Porosity [%] |
---|---|---|
BLT4 | 5.63 | 7.0 |
BLT4 + Eu | 5.89 | 2.3 |
BLT4 + Hf | 5.96 | 1.2 |
BLT4 + Hf + Eu | 5.76 | 4.4 |
Element | Marked Content of Oxides from EDS [%] | Theoretical Content of Oxides [%] | Difference of Determined Value in Relation to the Theoretical [%] |
---|---|---|---|
BaO | 64.5 | 65.24 | 0.74 |
La2O3 | 0.4 | 0.28 | 0.12 |
TiO2 | 34.7 | 34.18 | 0.52 |
Eu2O3 | 0.4 | 0.30 | 0.1 |
Element | Marked Content of Oxides from EDS [%] | Theoretical Content of Oxides [%] | Difference of Determined Value in Relation to the Theoretical [%] |
---|---|---|---|
BaO | 64.2 | 64.07 | 0.13 |
La2O3 | 0.3 | 0.27 | 0.03 |
TiO2 | 31.4 | 32.13 | 0.73 |
HfO2 | 4.1 | 3.53 | 0.57 |
Element | Marked Content of Oxides from EDS [%] | Theoretical Content of Oxides [%] | Difference of Determined Value in Relation to the Theoretical [%] |
---|---|---|---|
BaO | 64.4 | 63.80 | 0.6 |
La2O3 | 0.4 | 0.27 | 0.13 |
TiO2 | 31.1 | 32.10 | 1.00 |
Eu2O3 | 0.4 | 0.30 | 0.10 |
HfO2 | 3.7 | 3.53 | 0.17 |
Sample | TC | εmax | C | TCW | γ |
---|---|---|---|---|---|
BLT4 | 399 | 40,916 | 1.7 × 106 | 379 | Sharp transition |
BLT4 + Eu | 393 | 3453 | 0.89 × 105 | 356 | Sharp transition |
BLT4 + Hf | 380 | 15,174 | 0.39 × 106 | 100 | 1.76 |
BLT4 + Hf + Eu | 378 | 6247 | 0.17 × 106 | 370 | 1.59 |
Ceramics | BLT4 | BLT4 + Eu | BLT4 + Hf | BLT4 + Eu and Hf | ||||
---|---|---|---|---|---|---|---|---|
Temperature [K] | RG[kΩ] | RGB[kΩ] | RG[kΩ] | RGB[kΩ] | RG[kΩ] | RGB[kΩ] | RG[kΩ] | RGB[kΩ] |
800 | 0.8 | 17.8 | 29.7 | 3.3 | 68.9 | 3.8 | 21.2 | 5.0 |
700 | 13.1 | 267.2 | 806.2 | 20.1 | 842.2 | 12.9 | 46.1 | 39.5 |
Sample | EG[eV] | EGB[eV] |
---|---|---|
BLT4 | 0.87 ± 0.02 | 0.89 ± 0.01 |
BLT4 + Eu | 1.54 ± 0.03 | 0.89 ± 0.01 |
BLT4 + Hf | 1.25 ± 0.01 | 0.78 ± 0.01 |
BLT4 + Hf + Eu | 1.58 ± 0.02 | 0.95 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamczyk-Habrajska, M.; Wodecka-Duś, B.; Goryczka, T.; Szalbot, D.; Bara, M.; Ciepły, Ł. Dielectric and Electric Properties of Ba0.996La0.004Ti0.999O3 Ceramics Doped with Europium and Hafnium Ions. Materials 2022, 15, 413. https://doi.org/10.3390/ma15020413
Adamczyk-Habrajska M, Wodecka-Duś B, Goryczka T, Szalbot D, Bara M, Ciepły Ł. Dielectric and Electric Properties of Ba0.996La0.004Ti0.999O3 Ceramics Doped with Europium and Hafnium Ions. Materials. 2022; 15(2):413. https://doi.org/10.3390/ma15020413
Chicago/Turabian StyleAdamczyk-Habrajska, Małgorzata, Beata Wodecka-Duś, Tomasz Goryczka, Diana Szalbot, Mateusz Bara, and Łukasz Ciepły. 2022. "Dielectric and Electric Properties of Ba0.996La0.004Ti0.999O3 Ceramics Doped with Europium and Hafnium Ions" Materials 15, no. 2: 413. https://doi.org/10.3390/ma15020413
APA StyleAdamczyk-Habrajska, M., Wodecka-Duś, B., Goryczka, T., Szalbot, D., Bara, M., & Ciepły, Ł. (2022). Dielectric and Electric Properties of Ba0.996La0.004Ti0.999O3 Ceramics Doped with Europium and Hafnium Ions. Materials, 15(2), 413. https://doi.org/10.3390/ma15020413