Synthesis and Photoluminescence Properties of Pr3+-Doped Ba0.5Ca0.5TixZr(1-x)O3 Perovskite Diphasic Ceramics Obtained by the Modified Pechini Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Xiao, L.; Gu, H.; Sun, H. Advances in alternating current electroluminescent devices. Adv. Opt. Mater. 2019, 7, 1801154. [Google Scholar] [CrossRef] [Green Version]
- Kreisel, J.; Alexe, M.; Thomas, P.A. A photoferroelectrics material is more than the sum of its parts. Nat. Mater. 2012, 11, 260. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Lu, Q.; Lin, J.; Lin, C.; Zheng, X.; Lin, T.; Wu, X. Er3+-doped Ba0.85Ca0.15Ti0.9Zr0.1O3 optoelectronic thick films. J. Adv. Ceram. 2020, 9, 1801154. [Google Scholar] [CrossRef]
- Rodel, J.; Jo, W.; Seifert, K.T.P.; Anton, E.-M.; Granzow, T. Perspective on the Development of Lead-Free Piezoceramics. J. Am. Ceram. Soc. 2009, 92, 1153–1177. [Google Scholar] [CrossRef]
- Liu, W.; Ren, X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 2009, 103, 257602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, M.S.; Ur, S.C. Effects of A-site Ca and B-site Zr substitution on dielectric properties and microstructure in tin-doped BaTiO3-CaTiO3 composites. Ceram. Int. 2008, 34, 1941–1948. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, B.P.; Ma, J.; Zhao, L.; Pei, J. Phase structure and electrical properties of Sn and Zr modified BaTiO3 lead-free ceramics. Ceram. Int. 2017, 43, 641–649. [Google Scholar] [CrossRef]
- Kuang, S.J.; Tang, X.G.; Li, L.Y.; Jiang, Y.P.; Liu, Q.X. Influence of Zr dopant on the dielectric properties and Curie temperature of Ba(ZrxTi1-x)O3 (0 ≤ x ≤ 0.12) ceramics. Scr. Mater. 2009, 61, 68–71. [Google Scholar] [CrossRef]
- Tang, X.G.; Chew, K.H.; Chan, H.L.W. Diffuse phase transition and dielectric tunability of Ba(ZryTi1-y)O3 ferroelectric ceramics. Acta Mater. 2004, 52, 5177. [Google Scholar] [CrossRef]
- Zhang, J.C.; Wang, X.; Yao, X. Enhancement of luminescence and afterglow in CaTiO3:Pr3+ by Zr substitution for Ti. J. Alloy. Compd. 2010, 498, 152–156. [Google Scholar] [CrossRef]
- Cavalcante, L.S.; Anicete-Santos, M.; Sczancoski, J.C.; Simoes, L.G.P.; Santos, M.R.M.C.; Varela, J.A.; Pizani, P.S.; Longo, E. Intense and broad photoluminescence at room temperature in structurally disordered Ba(Zr0.25Ti0.25)O3 powders: An experimental/theoretical correlation. J. Phys. Chem. Solids 2008, 69, 1782–1789. [Google Scholar] [CrossRef]
- Cavalcante, L.S.; Simoes, A.Z.; Espinosa, J.W.M.; Santos, L.P.S.; Longo, E.; Varela, J.A.; Pizani, P.S. Study of structural evolution and photoluminescent properties at room temperature of Ca(Zr,Ti)O3 powders. J. Alloy. Compd. 2008, 464, 340–346. [Google Scholar] [CrossRef]
- Parida, S.; Rout, S.K.; Cavalcante, L.S.; Simoes, A.Z.; Barhai, P.K.; Batista, N.C.; Longo, E.; Siu Li, M.; Sharma, S.K. Structural investigation and improvement of photoluminescence properties in Ba(ZrxTi1-x)O3 powders synthesized by the solid state reaction method. Mater. Chem. Phys. 2013, 142, 70–76. [Google Scholar] [CrossRef]
- Anicete-Santos, M.; Cavalcante, L.S.; Orhan, E.; Paris, E.C.; Simoes, L.G.P.; Joya, M.R.; Rosa, I.L.V.; de Lucena, P.R.; Santos, M.R.M.C.; Santos-Junior, L.S.; et al. The role of structural order-disorder for visible intense photoluminescence in the BaZr0.5Ti0.5O3 thin films. Chem. Phys. 2005, 316, 260–266. [Google Scholar] [CrossRef]
- Zhu, X.N.; Zhang, W.; Chen, X.M. Enhanced dielectric and ferroelectric characteristics in Ca-modified BaTiO3 ceramics. AIP Adv. 2013, 3, 8. [Google Scholar] [CrossRef]
- DeVries, R.C.; Roy, R. Phase equilibria in the system BaTiO3-CaTiO3. J. Am. Ceram. Soc. 1995, 38, 142–146. [Google Scholar] [CrossRef]
- Souza, A.E.; Silva, R.A.; Santos, G.T.A.; Moreira, M.L.; Volanti, D.P.; Teixeira, S.R.; Longo, E. Photoluminescence of barium-calcium titanates obtained by the microwave-assisted hydrothermal method (MAH). Chem. Phys. Lett. 2010, 488, 54–56. [Google Scholar] [CrossRef]
- Diez-Betriu, X.; Garcia, J.E.; Ostos, C.; Boya, A.U.; Ochoa, D.A.; Mestres, L.; Perez, R. Phase transition characteristics and dielectric properties of rare-earth (La, Pr, Gd, Nd) doped Ba(Zr0.09Ti0.91)O3 ceramics. Mater. Chem. Phys. 2011, 125, 493–499. [Google Scholar] [CrossRef]
- Wang, Z.; Li, W.; Chu, R.; Hao, J.; Xu, Z.; Li, G. Strong luminescence and high piezoelectric properties in Pr-doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 multifunctional ceramics. J. Alloy. Compd. 2016, 689, 30–35. [Google Scholar] [CrossRef]
- Coondoo, I.; Panwar, N.; Amorin, H.; Ramana, V.E.; Alguero, M.; Kholkin, A. Enhanced piezoelectric properties of praseodymium-modified lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramics. J. Am. Ceram. Soc. 2015, 98, 3127–3135. [Google Scholar] [CrossRef]
- Han, C.; Wu, J.; Pu, C.; Qiao, S.; Wu, B.; Zhu, J.; Xiao, D. High piezoelectric coefficient of Pr2O3- doped Ba0.85Ca0.15Ti90Zr10O3 ceramics. Ceram. Int. 2012, 38, 6359–6363. [Google Scholar] [CrossRef]
- Zhou, L.; Du, P.; Zhang, Q.; Zhu, J.; Hou, Y.; Luo, L.; Li, W. Manipulating the ferroelectric, dielectric and photoluminescence performance of Ba0.77Ca0.23TiO3 ceramics through Pr3+ ions doping. J. Alloy. Compd. 2019, 810, 151897. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Sun, H.Q.; Wang, X.S.; Zhang, Y.; Li, X. Strong photoluminescence and piezoelectricity properties in Pr-doped Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics: Influence of concentration and microstructure. J. Eur. Ceram. Soc. 2014, 34, 1439–1444. [Google Scholar] [CrossRef]
- Diallo, P.T.; Boutinaud, P.; Mahiou, R.; Cousseins, J.C. Red Luminescence in Pr3+-Doped Calcium Titanates. Phys. Status Solidi(a) 1997, 160, 255–263. [Google Scholar] [CrossRef]
- Wang, X.; Xu, N.; Yamada, H.; Nishikubo, K.; Zheng, X.G. Electro-Mechano-Optical Conversions in Pr3+-Doped BaTiO3-CaTiO3 Ceramics. Adv. Mater. 2005, 17, 1254–1258. [Google Scholar] [CrossRef]
- Feng, A.; Smet, P.F. A Review of Mechanoluminescence in Inorganic Solids: Compounds, Mechanisms, Models and Applications. Materials 2018, 11, 484. [Google Scholar] [CrossRef] [Green Version]
- Shengtai, H.; Yulan, L.; Yusuke, I. Synthesis and Luminescence Properties of Pr3+ Doped CaxBa1-xTiO3 (0.3 ≤ x ≤ 1) Fine Particles. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2009, 24, 689–693. [Google Scholar]
- Zhang, J.C.; Wang, X.; Yao, X.; Xu, C.N.; Yamada, H. Strong Elastico-Mechanoluminescence in Diphase (Ba,Ca)TiO3:Pr3+ with Self-Assembled Sandwich Architectures. J. Electrochem. Soc. 2010, 157, G269–G273. [Google Scholar] [CrossRef]
- Tan, Z.; Fu, W.; Deng, X.; Yang, R.; Guan, X.; Lu, C.; Zhang, Y.; Han, L. Ferroelectric and piezoelectric properties of (1-x)BaTi0.8Zr0.2O3 xBa0.7Ca0.3TiO3 ceramics prepared by sol-gel technique. Adv. Mater. Res. 2011, 1480, 148–149. [Google Scholar]
- Puli, V.S.; Kumar, A.; Chrisey, D.B.; Tomozawa, M.; Scott, J.F.; Katiyar, R.S. Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: Novel high-energy-density capacitors. J. Phys. D Appl. 2011, 44, 395403. [Google Scholar] [CrossRef]
- Wang, M.; Zuo, R.; Qi, S.; Liu, L. Electron synthesis and characterization of sole gel derived (Ba,Ca)(Ti,Zr)O3 nanoparticles. J. Mater. Sci. Mater. Electron. 2012, 23, 753. [Google Scholar] [CrossRef]
- Hsieh, T.H.; Yen, S.C.; Ray, D.T. A study on the synthesis of (Ba,Ca)(Ti,Zr)O3 nano powders using Pechini polymeric precursor method. Ceram. Int. 2012, 38, 755–759. [Google Scholar] [CrossRef]
- Hunpratub, S.; Maensiri, S.; Chindaprasirt, P. Synthesis and characterization of Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics by hydrothermal method. Ceram. Int. 2014, 40, 13025–13031. [Google Scholar] [CrossRef]
- Castkova, K.; Maca, K.; Cihlar, J.; Hughes, H.; Matousek, A.; Tofel, P.; Bai, Y.; Button, T.W. Chemical Synthesis, Sintering and Piezoelectric Properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 Lead-Free Ceramics. J. Am. Ceram. Soc. 2015, 98, 2373–2380. [Google Scholar] [CrossRef]
- Ji, W.; Fang, B.; Lu, X.; Zang, S.; Yuan, N.; Ding, J. Tailoring structure and performance of BCZT ceramics prepared via hydrothermal method. Phys. B Condens. Matter 2019, 567, 65–78. [Google Scholar] [CrossRef]
- Mote, V.D.; Purushotham, Y.; Dole, B.N. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Thakur, O.P.; Feteira, A.; Keith, G.M.; Mould, A.G.; Sinclair, D.C.; West, A.R. Comment on the use of calcium as a dopant in X8R BaTiO3-based ceramics. Appl. Phys. Lett. 2007, 90, 142914. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Randall, C.A.; Mustapha, K.B.; Guo, J.; Walker, J.; Berbano, S.; Koh, S.C.L.; Wang, D.; Sinclair, D.C.; Reaney, I.M. Decarbonising ceramic manufacturing: A techno-economic analysis of energy efficient sintering technologies in the functional materials sector. J. Eur. Ceram. Soc. 2019, 39, 5213–5235. [Google Scholar] [CrossRef]
- Praveen, J.P.; Kumar, K.; James, A.R.; Karthik, T.; Asthana, S.; Das, D. Large piezoelectric strain observed in sol-gel derived BZT-BCT ceramics. Curr. Appl. Phys. 2014, 14, 396–402. [Google Scholar] [CrossRef]
- Wang, W.N.; Widiyastuti, W.; Ogi, T.; Lenggoro, I.W.; Okuyama, K. Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors. Chem. Mater. 2007, 17, 1723–1730. [Google Scholar] [CrossRef]
- Inaguma, Y.; Muronoi, T.; Sano, K. An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M = Nb, Ta): Pr3+. Inorg. Chem. 2011, 50, 5389–5395. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Pacheco, G.; Villafuerte-Castrejon, M.E.; Barrera-Calva, E.; Gonzalez, F. Modulation of Pr3+ luminescence in the SrTi1-xZrxO3 solid solution. J. Alloy. Compd. 2018, 753, 138–148. [Google Scholar] [CrossRef]
- Sun, H.; Wong, M.; Zhou, G.; Kwok, K.W. Tuning electroluminescence performance in Pr-doped piezoelectric bulk ceramics and composites. J. Mater. 2021, 7, 264–270. [Google Scholar] [CrossRef]
- Jia, W.; Jia, D.; Rodriguez, T.; Evans, D.R.; Meltzer, R.S.; Yen, W.M. UV excitation and trapping centers in CaTiO3:Pr3+. J. Lumin. 2006, 119, 13–18. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Wang, M.; Zhang, X.; Zhao, H.; Wang, X.J. Investigation on the improvement of red phosphorescence in CaTiO3:Pr3+ nanoparticles. J. Lumin. 2008, 128, 818–820. [Google Scholar] [CrossRef]
- Boutinaud, P.; Pinel, E.; Mahiou, R. Luminescence and afterglow in CaTiO3:Pr3+ film deposited by spray pyrolysis. Opt. Mater. 2008, 30, 1033–1038. [Google Scholar] [CrossRef]
- Verma, R.; Chauhan, A.; Batoo, K.M.; Hadi, M.; Rasian, E.H.; Kumar, R.; Ijaz, M.F.; Assaifan, A.K. Structural, optical and electrical properties of vanadium-doped, lead-free BCTZ ceramics. J. Alloy. Compd. 2021, 869, 159520. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, Y.; Li, Z.; Lin, C.; Zheng, X.; Lin, T.; Wu, X.; Wang, F. Microstructural, ferroelectric and photoluminescence properties of Er3+-doped Ba0.85Ca0.15Ti0.9Zr0.1O3 thin films. Mater. Chem. Phys. 2021, 262, 124320. [Google Scholar] [CrossRef]
- Reut, E.G.; Ryskin, A.I. Virtual recharge: Mechanism of radiationless transition in scheelite and fergusonite type crystals doped with rare-earth ions. Phys. Status Solidi 1973, 17, 47. [Google Scholar] [CrossRef]
- Boutinaud, R.; Mahiou, E.; Cavalli, M.; Bettinelli, M. Luminescent properties of Pr3+ in titanates and vanadates: Towards a criterion to predict 3P0 emission quenching. Chem. Phys. Lett. 2006, 418, 185–188. [Google Scholar] [CrossRef]
- Barandiaran, Z.; Bettinelli, M.; Seijo, L. Color control of Pr3+ luminescence by electron-hole recombination energy transfer in CaTiO3 and CaZrO3. J. Phys. Chem. Lett. 2017, 8, 3095–3100. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilk, A.; Kozielski, L.; Michalik, D.; Kozień, D.; Makowska, J.; Pędzich, Z. Synthesis and Photoluminescence Properties of Pr3+-Doped Ba0.5Ca0.5TixZr(1-x)O3 Perovskite Diphasic Ceramics Obtained by the Modified Pechini Method. Materials 2022, 15, 1058. https://doi.org/10.3390/ma15031058
Wilk A, Kozielski L, Michalik D, Kozień D, Makowska J, Pędzich Z. Synthesis and Photoluminescence Properties of Pr3+-Doped Ba0.5Ca0.5TixZr(1-x)O3 Perovskite Diphasic Ceramics Obtained by the Modified Pechini Method. Materials. 2022; 15(3):1058. https://doi.org/10.3390/ma15031058
Chicago/Turabian StyleWilk, Agnieszka, Lucjan Kozielski, Daniel Michalik, Dawid Kozień, Jolanta Makowska, and Zbigniew Pędzich. 2022. "Synthesis and Photoluminescence Properties of Pr3+-Doped Ba0.5Ca0.5TixZr(1-x)O3 Perovskite Diphasic Ceramics Obtained by the Modified Pechini Method" Materials 15, no. 3: 1058. https://doi.org/10.3390/ma15031058
APA StyleWilk, A., Kozielski, L., Michalik, D., Kozień, D., Makowska, J., & Pędzich, Z. (2022). Synthesis and Photoluminescence Properties of Pr3+-Doped Ba0.5Ca0.5TixZr(1-x)O3 Perovskite Diphasic Ceramics Obtained by the Modified Pechini Method. Materials, 15(3), 1058. https://doi.org/10.3390/ma15031058