Graphene Nanoplatelets Hybrid Flame Retardant Containing Ionic Liquid and Ammonium Polyphosphate for Modified Bismaleimide Resin: Excellent Flame Retardancy, Thermal Stability, Water Resistance and Unique Dielectric Properties
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of MPGNPs and EDGNPs
2.3. Preparation of DBMI Composite and GNPs Hybrid APP-IL
2.4. Measurements and Characterization
3. Results and Discussion
3.1. Morphology and Chemical Compositions of GNPs Hybrid Flame Retardants
3.2. Thermal Stability of the Flame Retardant Composites
3.3. Flame Retardant Properties of DBMI Composites
3.4. Water Resistance of the Flame Retardant Composites
3.5. Dielectric Properties of Flame Retardant Composites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Chen, F.; Han, Y.; Li, Z.; Liu, X.; Zhou, H.; Zhao, T. High performance fluorinated Bismaleimide-Triazine resin with excellent dielectric properties. J. Polym. Res. 2017, 25, 1–9. [Google Scholar] [CrossRef]
- Yousefi, N.; Sun, X.; Lin, X.; Shen, X.; Jia, J.; Zhang, B.; Tang, B.; Chan, M.; Kim, J.-K. Highly Aligned Graphene/Polymer Nanocomposites with Excellent Dielectric Properties for High-Performance Electromagnetic Interference Shielding. Adv. Mater. 2014, 26, 5480–5487. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Cheng, Z.-Y.; Bharti, V.; Xu, H.S.; Zhang, Q.M. High-dielectric-constant ceramic-powder polymer composites. Appl. Phys. Lett. 2000, 76, 3804–3806. [Google Scholar] [CrossRef]
- Zhou, X.; Qiu, S.; Liu, J.; Zhou, M.; Cai, W.; Wang, J.; Chu, F.; Xing, W.; Song, L.; Hu, Y. Construction of porous g-C3N4@PPZ tubes for high performance BMI resin with enhanced fire safety and toughness. Chem. Eng. J. 2020, 401, 126094. [Google Scholar] [CrossRef]
- Chen, X.; Gu, A.; Liang, G.; Yuan, L.; Zhuo, D.; Hu, J.-T. Novel low phosphorus-content bismaleimide resin system with outstanding flame retardancy and low dielectric loss. Polym. Degrad. Stab. 2012, 97, 698–706. [Google Scholar] [CrossRef]
- Walters, R.N.; Lyon, R.E. Molar group contributions to polymer flammability. J. Appl. Polym. Sci. 2002, 87, 548–563. [Google Scholar] [CrossRef]
- Zhou, X.; Qiu, S.; Cai, W.; Liu, L.; Hou, Y.; Wang, W.; Song, L.; Wang, X.; Hu, Y. Construction of hierarchical MoS2@TiO2 structure for the high performance bimaleimide system with excellent fire safety and mechanical properties. Chem. Eng. J. 2019, 369, 451–462. [Google Scholar] [CrossRef]
- Tian, C.; Yuan, L.; Liang, G.; Gu, A. High thermal conductivity and flame-retardant phosphorus-free bismaleimide resin composites based on 3D porous boron nitride framework. J. Mater. Sci. 2019, 54, 7651–7664. [Google Scholar] [CrossRef]
- Tang, C.; Yan, H.; Li, S.; Li, M.; Chen, Z. Novel phosphorus-containing polyhedral Oligomeric Silsesquioxane functionalized Graphene oxide: Preparation and its performance on the mechanical and flame-retardant properties of Bismaleimide composite. J. Polym. Res. 2017, 24, 157. [Google Scholar] [CrossRef]
- Xu, J.; Wong, C. Characterization and properties of an organic–inorganic dielectric nanocomposite for embedded decoupling capacitor applications. Compos. Part A Appl. Sci. Manuf. 2007, 38, 13–19. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, C.; Hao, R.; Hou, Y. Liquid-Phase exfoliation, functionalization and applications of graphene. Nanoscale 2011, 3, 2118–2126. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zhao, Y.; Sun, K.; Vieira, C.L.; Jia, Z.; Cui, C.; Wang, Z.; Walsh, A.; Huang, S. Method of ultrasound-assisted liquid-phase exfoliation to prepare graphene. Ultrason. Sonochem. 2019, 58, 104630. [Google Scholar] [CrossRef] [PubMed]
- Kun, P.; Wéber, F.; Balázsi, C. Preparation and examination of multilayer graphene nanosheets by exfoliation of graphite in high efficient attritor mill. Open Chem. 2011, 9, 47–51. [Google Scholar] [CrossRef]
- Wang, X.; Salari, M.; Jiang, D.-E.; Varela, J.C.; Anasori, B.; Wesolowski, D.J.; Dai, S.; Grinstaff, M.W.; Gogotsi, Y. Electrode material–ionic liquid coupling for electrochemical energy storage. Nat. Rev. Mater. 2020, 5, 787–808. [Google Scholar] [CrossRef]
- Yang, X.; Ge, N.; Hu, L.; Gui, H.; Wang, Z.; Ding, Y. Synthesis of a novel ionic liquid containing phosphorus and its application in intumescent flame retardant polypropylene system. Polym. Adv. Technol. 2013, 24, 568–575. [Google Scholar] [CrossRef]
- Jia, Y.-W.; Zhao, X.; Fu, T.; Li, D.-F.; Guo, Y.; Wang, X.-L.; Wang, Y.-Z. Synergy effect between quaternary phosphonium ionic liquid and ammonium polyphosphate toward flame retardant PLA with improved toughness. Compos. Part B Eng. 2020, 197, 108192. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Liu, P.; Xu, C.; Liu, Y.; Wang, Q. The preparation and application of a graphene-based hybrid flame retardant containing a long-chain phosphaphenanthrene. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xu, Y.; Li, S.; Xu, M.; He, Y.; Shi, Z.; Li, B. A novel strategy for simultaneously improving the fire safety, water resistance and compatibility of thermoplastic polyurethane composites through the construction of biomimetic hydrophobic structure of intumescent flame retardant synergistic system. Compos. Part B Eng. 2019, 176, 107218. [Google Scholar] [CrossRef]
- Guan, Y.-H.; Huang, J.-Q.; Yang, J.-C.; Shao, Z.-B.; Wang, Y.-Z. An Effective Way to Flame-Retard Biocomposite with Ethanolamine Modified Ammonium Polyphosphate and Its Flame Retardant Mechanisms. Ind. Eng. Chem. Res. 2015, 54, 3524–3531. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, M.-J.; Li, B. Synthesis of N-methyl triazine-ethylenediamine copolymer charring foaming agent and its enhancement on flame retardancy and water resistance for polypropylene composites. Polym. Degrad. Stab. 2016, 131, 20–29. [Google Scholar] [CrossRef]
- Liu, J.-C.; Xu, M.-J.; Lai, T.; Li, B. Effect of Surface-Modified Ammonium Polyphosphate with KH550 and Silicon Resin on the Flame Retardancy, Water Resistance, Mechanical and Thermal Properties of Intumescent Flame Retardant Polypropylene. Ind. Eng. Chem. Res. 2015, 54, 9733–9741. [Google Scholar] [CrossRef]
- Qu, H.; Wu, W.; Hao, J.; Wang, C.; Xu, J. Inorganic-Organic hybrid coating-encapsulated ammonium polyphosphate and its flame retardancy and water resistance in epoxy resin. Fire Mater. 2013, 38, 312–322. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, T.; Zha, J.-W.; Zhao, J.; Shi, C.-Y.; Dang, Z.-M. Functionalized graphene–BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 2013, 1, 6162–6168. [Google Scholar] [CrossRef]
- Phelan, J.C.; Sook, C.; Sung, P. Cure Characterization in Bis(Maleimide)/Diallylbisphenol A Resin by Fluorescence, FT-IR, and UV-Reflection Spectroscopy. Macromolecules 1997, 30, 6845–6851. [Google Scholar] [CrossRef]
- Rourke, J.P.; Pandey, P.A.; Moore, J.J.; Bates, M.; Kinloch, I.A.; Young, R.J.; Wilson, N.R. The Real Graphene Oxide Revealed: Stripping the Oxidative Debris from the Graphene-like Sheets. Angew. Chem. 2011, 123, 3231–3235. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.; et al. High-Yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wurstbauer, U.; Schiros, T.; Jaye, C.; Plaut, A.S.; He, R.; Rigosi, A.; Gutiérrez, C.; Fischer, D.; Pfeiffer, L.N.; Pasupathy, A.N.; et al. Molecular beam growth of graphene nanocrystals on dielectric substrates. Carbon 2012, 50, 4822–4829. [Google Scholar] [CrossRef] [Green Version]
- Ke, C.-H.; Li, J.; Fang, K.-Y.; Zhu, Q.-L.; Zhu, J.; Yan, Q.; Wang, Y.-Z. Synergistic effect between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym. Degrad. Stab. 2010, 95, 763–770. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, W.; Wagner, M.H.; Zhang, L.; Bard, S. Synthesis of DV-GO and its effect on the fire safety and thermal stability of bismaleimide. Polym. Degrad. Stab. 2016, 128, 209–216. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, H.; Qian, X.; Shi, Y.; Zhou, K.; Xu, H.; Shan, X.; Lo, S.; Hu, Y.; Gui, Z. A Novel Transparent Cross-Linked Poly(methyl methacrylate)-Based Copolymer with Enhanced Mechanical, Thermal, and Flame-Retardant Properties. Ind. Eng. Chem. Res. 2014, 53, 3880–3887. [Google Scholar] [CrossRef]
- Xu, M.; Lei, Y.; Ren, D.; Chen, L.; Li, K.; Liu, X. Thermal Stability of Allyl-Functional Phthalonitriles-Containing Benzoxazine/Bismaleimide Copolymers and Their Improved Mechanical Properties. Polymers 2018, 10, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Gardner, D.J.; Han, Y.; Kiziltas, A.; Cai, Z.; Tshabalala, M.A. Influence of drying method on the material properties of nanocellulose I: Thermostability and crystallinity. Cellulose 2013, 20, 2379–2392. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, L.; Liang, G.; Gu, A. Achieving ultrahigh glass transition temperature, halogen-free and phosphorus-free intrinsic flame retardancy for bismaleimide resin through building network with diallyloxydiphenyldisulfide. Polymer 2020, 203, 122769. [Google Scholar] [CrossRef]
- Oktay, B.; Çakmakçi, E. DOPO tethered Diels Alder clickable reactive silica nanoparticles for bismaleimide containing flame retardant thiol-ene nanocomposite coatings. Polymer 2017, 131, 132–142. [Google Scholar] [CrossRef]
- Guan, Q.; Yuan, L.; Wu, S.; Gu, A.; Liang, G. Enhanced thermal and dielectric properties of hybrid organic/inorganic shell microcapsule/thermosetting resin nanocomposites. Polym. Int. 2017, 66, 1940–1948. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.; Yang, S.; Cheng, J.; Ding, G.; Huo, S. Facile construction of one-component intrinsic flame-retardant epoxy resin system with fast curing ability using imidazole-blocked bismaleimide. Compos. Part B Eng. 2019, 177, 107380. [Google Scholar] [CrossRef]
- Zhang, X.; Akram, R.; Zhang, S.; Ma, H.; Wu, Z.; Wu, D. Hexa(eugenol)cyclotriphosphazene modified bismaleimide resins with unique thermal stability and flame retardancy. React. Funct. Polym. 2017, 113, 77–84. [Google Scholar] [CrossRef]
- El-Meligy, M.G.; Mohamed, S.H.; Mahani, R.M. Study mechanical, swelling and dielectric properties of prehydrolysed banana fiber—Waste polyurethane foam composites. Carbohydr. Polym. 2010, 80, 366–372. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, W.; Yang, R. Direct diazotization of graphite nanoplatelets with melamine and their favorable application in epoxy resins. Polym. Adv. Technol. 2020, 31, 1300–1311. [Google Scholar] [CrossRef]
- Zeng, X.; Yu, S.; Sun, R. Thermal behavior and dielectric property analysis of boron nitride-filled bismaleimide-triazine resin composites. J. Appl. Polym. Sci. 2012, 128, 1353–1359. [Google Scholar] [CrossRef]
- Wen, F.; Xu, Z.; Tan, S.; Xia, W.; Wei, X.; Zhang, Z. Chemical Bonding-Induced Low Dielectric Loss and Low Conductivity in High-K Poly(vinylidenefluoride-trifluorethylene)/Graphene Nanosheets Nanocomposites. ACS Appl. Mater. Interfaces 2013, 5, 9411–9420. [Google Scholar] [CrossRef]
Sample | DABA (wt.%) | BMI (wt.%) | MPG (wt.%) | EDG (wt.%) | MPGNPs a) (wt.%) | EDGNPs b) (wt.%) | IL (wt.%) | APP (wt.%) |
---|---|---|---|---|---|---|---|---|
Neat DBMI | 44.44 | 55.56 | -- | -- | -- | -- | -- | -- |
DBMI/MPG/IL-APP | 40.00 | 50.00 | 0.50 | -- | -- | -- | 0.50 | 9.00 |
DBMI/EDG/IL-APP | 40.00 | 50.00 | -- | 0.50- | -- | -- | 0.50 | 9.00 |
DBMI/MPGNPs/IL-APP | 40.00 | 50.00 | -- | -- | 1.00 | -- | -- | 9.00 |
DBMI/EDGNPs/IL-APP | 40.00 | 50.00 | -- | -- | -- | 1.00 | -- | 9.00 |
Sample | Horizontal Distance (μm) | Vertical Distance (nm) | Surface Distance (μm) |
---|---|---|---|
MPGNPs | 0.1 | 7.6 | 0.1 |
EDGNPs | 0.1 | 2.7 | 0.1 |
Sample | Td,5% (°C) | Tmax (°C) | WLRmax (% min−1) | R450 °C (%) | R700 °C (%) |
---|---|---|---|---|---|
Neat DBMI | 409.3 ± 0.2 | 453.1 ± 0.2 | 0.99 | 67.9 ± 0.2 | 27.2 ± 0.2 |
DBMI/MPG/IL-APP | 374.0 ± 0.1 | 422.5 ± 0.2 | 0.39 | 72.6 ± 0.2 | 54.6 ± 0.2 |
DBMI/EDG/IL-APP | 375.3 ± 0.2 | 422.4 ± 0.2 | 0.32 | 75.9 ± 0.2 | 59.2 ± 0.2 |
DBMI/MPGNPs/IL-APP | 376.2 ± 0.2 | 418.3 ± 0.2 | 0.38 | 74.1 ± 0.2 | 59.2 ± 0.2 |
DBMI/EDGNPs/IL-APP | 369.8 ± 0.2 | 415.2 ± 0.2 | 0.33 | 74.6 ± 0.2 | 59.9 ± 0.2 |
Sample | TTI (S) | PHRR (kW·m−2) | THR (MJ·m−2) | TSR (m2·m−2) | av-EHC (MJ·kg−1) | av-MLR (g·s−1) |
---|---|---|---|---|---|---|
Neat DBMI | 40 ± 3 | 327.1 ± 4.5 | 83.8 ± 0.2 | 2616.1 ± 0.2 | 22.8 ± 0.2 | 0.06 ± 0.007 |
DBMI/MPG/IL-APP | 37 ± 3 | 239.7 ± 14.2 | 54.2 ± 0.5 | 1571.3 ± 0.5 | 22.3 ± 0.5 | 0.04 ± 0.003 |
DBMI/EDG/IL-APP | 43 ± 3 | 291.2 ± 36.1 | 57.9 ± 0.5 | 1492.4 ± 0.5 | 21.7 ± 0.5 | 0.04 ± 0.002 |
DBMI/MPGNPs/IL-APP | 42 ± 3 | 184.4 ± 10.8 | 54.4 ± 0.4 | 1357.6 ± 0.4 | 21.5 ± 0.4 | 0.04 ± 0.003 |
DBMI/EDGNPs/IL-APP | 39 ± 3 | 190.4 ± 17.0 | 43.7 ± 0.3 | 1248.0 ± 0.2 | 22.5 ± 0.2 | 0.03 ± 0.003 |
Sample | Mass Lost (wt.%) | LOI-after Soaking (%) | △LOI (%) |
---|---|---|---|
DBMI/APP | 2.36 | 35.3 | 5.6 |
DBMI/IL-APP | 2.09 | 35.9 | 5.3 |
DBMI/MPG/IL-APP | 1.71 | 36.7 | 5.2 |
DBMI/EDG/IL-APP | 1.40 | 37.2 | 4.4 |
DBMI/MPGNPs/IL-APP | 1.26 | 40.6 | 3.2 |
DBMI/EDGNPs/IL-APP | 0.96 | 40.9 | 2.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Jia, X.; Shi, H.; Hao, J.; Qu, H.; Wang, J. Graphene Nanoplatelets Hybrid Flame Retardant Containing Ionic Liquid and Ammonium Polyphosphate for Modified Bismaleimide Resin: Excellent Flame Retardancy, Thermal Stability, Water Resistance and Unique Dielectric Properties. Materials 2021, 14, 6406. https://doi.org/10.3390/ma14216406
Wang Y, Jia X, Shi H, Hao J, Qu H, Wang J. Graphene Nanoplatelets Hybrid Flame Retardant Containing Ionic Liquid and Ammonium Polyphosphate for Modified Bismaleimide Resin: Excellent Flame Retardancy, Thermal Stability, Water Resistance and Unique Dielectric Properties. Materials. 2021; 14(21):6406. https://doi.org/10.3390/ma14216406
Chicago/Turabian StyleWang, Yan, Xining Jia, Hui Shi, Jianwei Hao, Hongqiang Qu, and Jingyu Wang. 2021. "Graphene Nanoplatelets Hybrid Flame Retardant Containing Ionic Liquid and Ammonium Polyphosphate for Modified Bismaleimide Resin: Excellent Flame Retardancy, Thermal Stability, Water Resistance and Unique Dielectric Properties" Materials 14, no. 21: 6406. https://doi.org/10.3390/ma14216406
APA StyleWang, Y., Jia, X., Shi, H., Hao, J., Qu, H., & Wang, J. (2021). Graphene Nanoplatelets Hybrid Flame Retardant Containing Ionic Liquid and Ammonium Polyphosphate for Modified Bismaleimide Resin: Excellent Flame Retardancy, Thermal Stability, Water Resistance and Unique Dielectric Properties. Materials, 14(21), 6406. https://doi.org/10.3390/ma14216406