Changes in Human Erythrocyte Exposed to Organophosphate Flame Retardants: Tris(2-chloroethyl) Phosphate and Tris(1-chloro-2-propyl) Phosphate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Isolation and Treatment of Human Erythrocytes
2.3. Hemolysis
2.4. Quantification of Apoptosis—Analysis of Phosphatidylserine (PS) Externalization
2.5. Morphological Changes
2.5.1. Phase Contrast Microscopy
2.5.2. FSC Parameter
2.6. Hemoglobin Oxidation
2.7. Oxidation of 6-Carboxy-2′,7′-Dichlorodihydrofluorescein Diacetate (H2DCFDA)
2.8. Reduced Glutathione Level and Antioxidant Enzyme Activity
2.9. Statistical Analysis
3. Results
3.1. Hemolysis
3.2. Quantification of Eryptosis—Analysis of Phosphatidylserine (PS) Externalization
3.3. Morphological Changes of Erythrocytes, FSC Parameter
3.4. Hemoglobin Oxidation
3.5. Oxidation of H2DCFDA—Total ROS Level
3.6. The Level of Reduced Glutathione (GSH) and the Antioxidant Enzymes Activities
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAT activity | catalase and hemoglobin activity |
DCF | dichlorofluorescein |
DTNB | 5,5-dithiobis(2-nitrobenzoic) acid |
FITC | fluorescein isothiocyanate |
FRs | flame retardants |
GSH | reduced glutathione |
GSH-Px | glutathione peroxidase |
H2DCFDA | 6-carboxy2′,7′-dichlorodihydrofluorescein diacetate |
MetHb | methemoglobin |
OPFRs | organophosphate flame retardants |
PBMCs | peripheral blood mononuclear cells |
PS | phosphatidylserine |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
TCEP | tris(2-chloroethyl) phosphate |
TCPP | tris(1-chloro-2-propyl) |
References
- Yasin, S.; Behary, N.; Curti, M.; Rovero, G. Global Consumption of Flame Retardants and Related Environmental Concerns: A Study on Possible Mechanical Recycling of Flame Retardant Textiles. Fibers 2016, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- He, R.-W.; Li, Y.-Z.; Xiang, P.; Li, C.; Cui, X.-Y.; Ma, L.Q. Impact of particle size on distribution and human exposure of flame retardants in indoor dust. Environ. Res. 2018, 162, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Q.; Ma, J.; Yang, S.; Wu, Y.; An, Y. A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure. Chemosphere 2020, 260, 127633. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Hiltscher, M.; Gruber, D.; Püttmann, W. Organophosphate flame retardants (OPFRs) in indoor and outdoor air in the Rhine/Main area, Germany: Comparison of concentrations and distribution profiles in different microenvironments. Environ. Sci. Pollut. Res. 2016, 24, 10992–11005. [Google Scholar] [CrossRef]
- Sim, W.; Choi, S.; Choo, G.; Yang, M.; Park, J.-H.; Oh, J.-E. Organophosphate Flame Retardants and Perfluoroalkyl Substances in Drinking Water Treatment Plants from Korea: Occurrence and Human Exposure. Int. J. Environ. Res. Public Health 2021, 18, 2645. [Google Scholar] [CrossRef]
- Vorkamp, K.; Balmer, J.; Hung, H.; Letcher, R.J.; Rigét, F.F.; de Wit, C.A. Current-use halogenated and organophosphorous flame retardants: A review of their presence in Arctic ecosystems. Emerg. Contam. 2019, 5, 179–200. [Google Scholar] [CrossRef]
- Mekni, S.; Barhoumi, B.; Touil, S.; Driss, M.R.; Eljarrat, E. Occurrence of Halogenated and Organophosphate Flame Retardants in Sediments and Eels (Anguilla anguilla) From Bizerte Lagoon, Tunisia. Front. Environ. Sci. 2020, 8. [Google Scholar] [CrossRef]
- Sahlström, L.M.O.; Sellström, U.; De Wit, C.A.; Lignell, S.; Darnerud, P.O. Brominated Flame Retardants in Matched Serum Samples from Swedish First-Time Mothers and Their Toddlers. Environ. Sci. Technol. 2014, 48, 7584–7592. [Google Scholar] [CrossRef] [PubMed]
- Toms, M.L.; Sjodin, A.; Harden, F.; Hobson, P.; Jones, R.; Edenfield, E.; Mueller, J.F. Serum polybrominated diphenyl ethers (PBDE) in pooled serum are higher in children (2–5 years of age) than in infants and adults. Environ. Health Perspect. 2009, 117, 1461–1465. [Google Scholar] [CrossRef] [Green Version]
- Butt, C.M.; Congleton, J.; Hoffman, K.; Fang, M.; Stapleton, H.M. Metabolites of Organophosphate Flame Retardants and 2-Ethylhexyl Tetrabromobenzoate in Urine from Paired Mothers and Toddlers. Environ. Sci. Technol. 2014, 48, 10432–10438. [Google Scholar] [CrossRef]
- Sugeng, E.J.; Cock, M.; Leonards, P.E.G.; van de Bor, M. Toddler behavior, the home environment, and flame retardant exposure. Chemosphere 2020, 252, 126588. [Google Scholar] [CrossRef]
- Castorina, R.; Bradman, A.; Stapleton, H.M.; Butt, C.; Avery, D.; Harley, K.G.; Gunier, R.B.; Holland, N.; Eskenazi, B. Current-use flame retardants: Maternal exposure and neurodevelopment in children of the CHAMACOS cohort. Chemosphere 2017, 189, 574–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuong, A.M.; Yolton, K.; Dietrich, K.N.; Braun, J.M.; Lanphear, B.P.; Chen, A. Exposure to polybrominated diphenyl ethers (PBDEs) and child behavior: Current findings and future directions. Horm. Behav. 2018, 101, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Xu, Y.; Wang, Z. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research. Chemosphere 2016, 153, 78–90. [Google Scholar] [CrossRef]
- Wei, G.-L.; Li, D.-Q.; Zhuo, M.-N.; Liao, Y.-S.; Xie, Z.-Y.; Guo, T.-L.; Li, J.-J.; Zhang, S.-Y.; Liang, Z.-Q. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure. Environ. Pollut. 2015, 196, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Environmental Health Criteria 209. Flame Retardants: Tris(chloropropyl) Phosphate and Tris (2-chloroethyl)Phosphate; World Health Organization: Geneva, Switzerland, 1998; pp. 1–129. Available online: www.who.int/ipcs/publications/ehc/who_ehc_209.pdf?ua=1 (accessed on 31 May 2021).
- He, C.; English, K.; Baduel, C.; Thai, P.; Jagals, P.; Ware, R.S.; Li, Y.; Wang, X.; Sly, P.; Mueller, J.F. Concentrations of organophosphate flame retardants and plasticizers in urine from young children in Queensland, Australia and associations with environmental and behavioural factors. Environ. Res. 2018, 164, 262–270. [Google Scholar] [CrossRef]
- Maddela, N.R.; Venkateswarlu, K.; Megharaj, M. Tris(2-chloroethyl) phosphate, a pervasive flame retardant: Critical perspective on its emissions into the environment and human toxicity. Environ. Sci. Process. Impacts 2020, 22, 1809–1827. [Google Scholar] [CrossRef]
- Möller, A.; Sturm, R.; Xie, Z.; Cai, M.; He, J.; Ebinghaus, R. Organophosphorus Flame Retardants and Plasticizers in Airborne Particles over the Northern Pacific and Indian Ocean toward the Polar Regions: Evidence for Global Occurrence. Environ. Sci. Technol. 2012, 46, 3127–3134. [Google Scholar] [CrossRef]
- Li, J.; Zhao, L.; Letcher, R.J.; Zhang, Y.; Jian, K.; Zhang, J.; Su, G. A review on organophosphate Ester (OPE) flame retardants and plasticizers in foodstuffs: Levels, distribution, human dietary exposure, and future directions. Environ. Int. 2019, 127, 35–51. [Google Scholar] [CrossRef]
- Bekele, T.G.; Zhao, H.; Wang, Q.; Chen, J. Bioaccumulation and Trophic Transfer of Emerging Organophosphate Flame Retardants in the Marine Food Webs of Laizhou Bay, North China. Environ. Sci. Technol. 2019, 53, 13417–13426. [Google Scholar] [CrossRef]
- Sala, B.; Giménez, J.; de Stephanis, R.; Barceló, D.; Eljarrat, E. First determination of high levels of organophosphorus flame retardants and plasticizers in dolphins from Southern European waters. Environ. Res. 2019, 172, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Zhu, H.; Kannan, K. Organophosphorus Flame Retardants and Plasticizers in Breast Milk from the United States. Environ. Sci. Technol. Lett. 2019, 6, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Li, Y.; Zhang, S.; Ding, M.; Hu, J. Association of Aryl Organophosphate Flame Retardants Triphenyl Phosphate and 2-Ethylhexyl Diphenyl Phosphate with Human Blood Triglyceride and Total Cholesterol Levels. Environ. Sci. Technol. Lett. 2019, 6, 532–537. [Google Scholar] [CrossRef]
- Zhao, F.; Wan, Y.; Zhao, H.; Hu, W.; Mu, D.; Webster, T.F.; Hu, J. Levels of Blood Organophosphorus Flame Retardants and Association with Changes in Human Sphingolipid Homeostasis. Environ. Sci. Technol. 2016, 50, 8896–8903. [Google Scholar] [CrossRef]
- Van de Eede, N.V.D.; Neels, H.; Jorens, P.G.; Covaci, A. Analysis of organophosphate flame retardant diester metabolites in human urine by liquid chromatography electrospray ionisation tandem mass spectrometry. J. Chromatogr. A 2013, 1303, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-Y.; Salamova, A.; He, K.; Hites, R.A. Analysis of polybrominated diphenyl ethers and emerging halogenated and organophosphate flame retardants in human hair and nails. J. Chromatogr. A 2015, 1406, 251–257. [Google Scholar] [CrossRef]
- Hou, M.; Shi, Y.; Jin, Q.; Cai, Y. Organophosphate esters and their metabolites in paired human whole blood, serum, and urine as biomarkers of exposure. Environ. Int. 2020, 139, 105698. [Google Scholar] [CrossRef]
- Yasin, S.; Curti, M.; Behary, N.; Perwuelz, A.; Giraud, S.; Rovero, G.; Guan, J.; Chen, G. Process Optimization of Eco-Friendly Flame Retardant Finish For Cotton Fabric: A Response Surface Methodology Approach. Surf. Rev. Lett. 2017, 24, 1750114. [Google Scholar] [CrossRef]
- Sharma, N.K.; Verma, C.S.; Chariar, V.M.; Prasad, R. Eco-friendly flame-retardant treatments for cellulosic green building materials. Indoor Built Environ. 2013, 24, 422–432. [Google Scholar] [CrossRef]
- Poma, G.; Glynn, A.; Malarvannan, G.; Covaci, A.; Darnerud, P.O. Dietary intake of phosphorus flame retardants (PFRs) using Swedish food market basket estimations. Food Chem. Toxicol. 2017, 100, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Poma, G.; Sales, C.; Bruyland, B.; Christia, C.; Goscinny, S.; Van Loco, J.; Covaci, A. Occurrence of Organophosphorus Flame Retardants and Plasticizers (PFRs) in Belgian Foodstuffs and Estimation of the Dietary Exposure of the Adult Population. Environ. Sci. Technol. 2018, 52, 2331–2338. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, W.; Mu, L.; Chen, Y.; Ren, C.; Hu, X.; Zhou, Q. Rice ingestion is a major pathway for human exposure to organophosphate flame retardants (OPFRs) in China. J. Hazard. Mater. 2016, 318, 686–693. [Google Scholar] [CrossRef]
- Dishaw, L.V.; Powers, C.M.; Ryde, I.T.; Roberts, S.C.; Seidler, F.J.; Slotkin, T.A.; Stapleton, H.M. Is the PentaBDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells. Toxicol. Appl. Pharmacol. 2011, 256, 281–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhat, A.; Buick, J.K.; Williams, A.; Yauk, C.L.; O’Brien, J.M.; Crump, D.; Williams, K.L.; Chiu, S.; Kennedy, S.W. 4 Tris(1,3-dichloro-2-propyl) phosphate perturbs the expression of genes involved in immune response and lipid and steroid metabolism in chicken embryos. Toxicol. Appl. Pharmacol. 2014, 275, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Li, H.; Xu, S.; Zhou, Q.; Jin, M.; Tang, J. A review of organophosphorus flame retardants (OPFRs): Occurrence, bioaccumulation, toxicity, and organism exposure. Environ. Sci. Pollut. Res. 2019, 26, 22126–22136. [Google Scholar] [CrossRef]
- European Chemicals Agency. Screening Report: An Assessment of Whether The Use of TCEP, TCPP and TDCP in Articles Should Be Restricted; European Chemicals Agency: Helsinki, Finland, 2018; pp. 1–64.
- Stasiuk, M.; Kijanka, G.; Kozubek, A. Transformations of erythrocytes shape and its regulation. Postepy Biochem. 2009, 55, 425–433. [Google Scholar] [PubMed]
- Jarosiewicz, M.; Duchnowicz, P.; Włuka, A.; Bukowska, B. Evaluation of the effect of brominated flame retardants on hemoglobin oxidation and hemolysis in human erythrocytes. Food Chem. Toxicol. 2017, 109, 264–271. [Google Scholar] [CrossRef]
- Jeffs, L.B.; Khachatourians, G.G. Toxic properties of Beauveria pigments on erythrocyte membranes. Toxicon 1997, 35, 1351–1356. [Google Scholar] [CrossRef]
- Jarosiewicz, M.; Krokosz, A.; Marczak, A.; Bukowska, B. Changes in the activities of antioxidant enzymes and reduced glutathione level in human erythrocytes exposed to selected brominated flame retardants. Chemosphere 2019, 227, 93–99. [Google Scholar] [CrossRef]
- Drabkin, D.I. Spectrophotometric studies, XIV the crystallographic and optical properties of the hemoglobin of man in com-parison with these of other species. J. Biol. Chem. 1946, 164, 703–723. [Google Scholar] [CrossRef]
- Jarosiewicz, M.; Michałowicz, J.; Bukowska, B. In vitro assessment of eryptotic potential of tetrabromobisphenol A and other bromophenolic flame retardants. Chemosphere 2019, 215, 404–412. [Google Scholar] [CrossRef]
- Bors, M.; Sicinska, P.; Michałowicz, J.; Wieteska, P.; Gulewicz, K.; Bukowska, B. Evaluation of the effect of Uncaria tomentosa extracts on the size and shape of human erythrocytes (in vitro). Environ. Toxicol. Pharmacol. 2012, 33, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Misra, H.; Fridovich, I. The role of superoxide anion in the autooxidation of epinephryne and a simple assai for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Packer, L., Ed.; Academic Press: Orlando, FL, USA, 1984; pp. 121–126. [Google Scholar]
- Rice-Evans, C.A.; Daplock, A.; Simonts, M.C.R. Techniques in free radical research. In Laboratory Techniques in Biochemistry and Molecular Biology; Diplock, A.T., Symons, M.C.R., Rice-Evans, C.A., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 22, pp. 206–280. [Google Scholar]
- Mokra, K.; Bukowski, K.; Woźniak, K. Effects of tris(1-chloro-2-propyl)phosphate and tris(2-chloroethyl)phosphate on cell viability and morphological changes in peripheral blood mononuclear cells (in vitro study). Hum. Exp. Toxicol. 2018, 37, 1336–1345. [Google Scholar] [CrossRef]
- Jarema, K.A.; Hunter, D.L.; Shaffer, R.M.; Behl, M.; Padilla, S. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol. Teratol. 2015, 52, 194–209. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Li, J.; Su, G.; Letcher, R.J.; Giesy, J.P.; Liu, C. A Reagent-Free Screening Assay for Evaluation of the Effects of Chemicals on the Proliferation and Morphology of HeLa-GFP Cells. Environ. Sci. Technol. Lett. 2016, 3, 322–326. [Google Scholar] [CrossRef]
- Marczak, A. Human erythrocyte apoptosis. Post. Biol. Kom. 2005, 32, 359–373. [Google Scholar]
- Lang, E.; Lang, F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin. Cell Dev. Biol. 2015, 39, 35–42. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Xu, T.; Wang, Z.; Wang, J.; Xiong, W.; Lu, W.; Zheng, H.; Yuan, J. Involvement of ROS-mediated mitochondrial dysfunction and SIRT3 down-regulation in tris (2-chloroethyl) phosphate-induced cell cycle arrest. Toxicol. Res. 2016, 5, 461–470. [Google Scholar] [CrossRef] [Green Version]
- An, J.; Hu, J.; Shang, Y.; Zhong, Y.; Zhang, X.; Yu, Z. The cytotoxicity of organophosphate flame retardants on HepG2, A549 and Caco-2 cells. J. Environ. Sci. Health Part A 2016, 51, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-R.; Kamau, P.W.; Korte, C.; Loch-Caruso, R. Tetrabromobisphenol A activates inflammatory pathways in human first trimester extravillous trophoblasts in vitro. Reprod. Toxicol. 2014, 50, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Włuka, A.; Woźniak, A.; Woźniak, E.; Michałowicz, J. Tetrabromobisphenol A, terabromobisphenol S and other bromophenolic flame retardants cause cytotoxic effects and induce oxidative stress in human peripheral blood mononuclear cells (in vitro study). Chemosphere 2020, 261, 127705. [Google Scholar] [CrossRef]
- van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, K.; Wysokinski, D.; Mokra, K.; Wozniak, K. DNA damage and methylation induced by organophosphate flame retardants: Tris(2-chloroethyl) phosphate and tris(1-chloro-2-propyl) phosphate in human peripheral blood mononuclear cells. Hum. Exp. Toxicol. 2019, 38, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Zhang, C.; Ho, S.-H. Computational Simulation Associated with Biological Effects of Alkyl Organophosphate Flame Retardants with Different Carbon Chain Lengths on Chlorella pyrenoidosa. Chemosphere 2021, 263, 127997. [Google Scholar] [CrossRef]
OPFR [µg/mL] | GSH μmol/mL PC | SOD (U/g Hb) | CAT (µmol/min/mg Hb) | GSH-Px (µmol/min/g Hb) |
---|---|---|---|---|
TCEP control | 1.04 ± 0.48 | 2444.84 ± 855.23 | 195.15 ± 28.64 | 33.38 ± 7.12 |
0.001 | 1.09 ± 0.33 | 2798.34 ± 361.01 | 200.99 ± 5.56 | 34.61 ± 6.29 |
0.01 | 1.10 ± 0.40 | 2789.14 ± 283.05 | 212.46 ± 9.35 | 31.47 ± 7.65 |
1 | 1.03 ± 0.46 | 2857.90 ± 963.81 | 193.41 ± 27.28 | 29.84 ± 6.06 |
10 | 0.98 ± 0.41 | 2381.96 ± 862.75 | 186.90 ± 15.50 | 31.20 ± 5.92 |
100 | 1.02 ± 0.49 | 2577.72 ± 973,40 | 194.87 ± 20.52 | 31.36 ± 5.25 |
TCPP control | 1.03 ± 0.38 | 2365.87 ± 922.39 | 198.24 ± 25.31 | 30.39 ± 7.05 |
0.0001 | 0.96 ± 0.43 | 2381.95 ± 358.62 | 200.98 ± 5.56 | 33.84 ± 6.21 |
0.01 | 0.98 ± 0.34 | 2394.33 ± 209.11 | 212.46 ± 9.35 | 35.63 ± 8.94 |
1 | 0.99 ± 0.34 | 2114.02 ± 676.54 | 189.03 ± 33.70 | 31.42 ± 7.95 |
10 | 0.98 ± 0.36 | 2257.40 ± 633.55 | 196.42 ± 15.49 | 30.58 ± 7.61 |
100 | 0.92 ± 0.37 | 2578.06 ± 982.79 | 175.55 ± 24.88 | 34.77 ± 4.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukowska, B. Changes in Human Erythrocyte Exposed to Organophosphate Flame Retardants: Tris(2-chloroethyl) Phosphate and Tris(1-chloro-2-propyl) Phosphate. Materials 2021, 14, 3675. https://doi.org/10.3390/ma14133675
Bukowska B. Changes in Human Erythrocyte Exposed to Organophosphate Flame Retardants: Tris(2-chloroethyl) Phosphate and Tris(1-chloro-2-propyl) Phosphate. Materials. 2021; 14(13):3675. https://doi.org/10.3390/ma14133675
Chicago/Turabian StyleBukowska, Bożena. 2021. "Changes in Human Erythrocyte Exposed to Organophosphate Flame Retardants: Tris(2-chloroethyl) Phosphate and Tris(1-chloro-2-propyl) Phosphate" Materials 14, no. 13: 3675. https://doi.org/10.3390/ma14133675
APA StyleBukowska, B. (2021). Changes in Human Erythrocyte Exposed to Organophosphate Flame Retardants: Tris(2-chloroethyl) Phosphate and Tris(1-chloro-2-propyl) Phosphate. Materials, 14(13), 3675. https://doi.org/10.3390/ma14133675