Analytical and Numerical Investigation of an Electrochemical Chloride Barrier for Reinforced Concrete Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simplified Mathematical–Physical Problem
- : Molar flow of the NaCl ions (mol/(m² s));
- : Diffusion coefficient of NaCl ions in mortar (m²/s);
- : Concentration of NaCl ions in mortar (mol/m³);
- : Position along the depth of the probe (m);
- : Average speed of NaCl ions in electrical field (m/s);
- : Average mass-related speed (m/s).
- : Concentration of the NaCl ions in the NaCl solution (mol/m³);
- : Length/depth of the probe (m).
2.2. Analytical Solution of the Simplified 1D-Problem
2.3. Numerical Solution with Finite Differences of the Simplified 1D-Problem
- : Discretized solution for the concentration (mol/m³);
- : Time index in solution grid, j ∈ , j =
- : Spatial index in solution grid, i ∈ , i =
- : Maximum spatial index in solution grid, ;
- : Maximum time index in solution grid, ;
- : Time increment in solution grid (t);
- : Spatial increment in solution grids (m).
2.4. Solution with the Finite Element Method for the 3D Problem with Multi-Material Geometry
3. Results—Evaluation and Visualization of the Solutions
3.1. Comparison of Analytical and Finite Differences Solutions
3.2. Visualization and Discussion of the FEM Solution
4. Discussion—Overall Solution Comparison and Evaluation
5. Conclusions
- The effects found in the experiments can be confirmed by the developed and presented finite differences model and the performed FEM simulations, and are explainable solely by the acting diffusion and migration in the test specimens;
- While the performed FEM simulations modelled the chloride flow the closest to reality and also revealed the weakened electrical migration above the first carbon layer, the finite differences model also showed the investigated effects above the first carbon layer;
- The effect of the local minimum is limited to positions above the depth of the first carbon layer of the test specimens. It is caused by the electrical field between the first and second carbon layer also generating a weakened electrical migration directed into the test specimen slightly above the first carbon layer;
- According to the experimental results and the ones from the FEM simulation, higher migration velocities or stronger electrical fields, respectively, lead to lower chloride concentrations for all positions below the first carbon layer only after sufficient time duration. Therefore, the intended effect of an electrochemical chloride barrier can in general only be observed and confirmed after a certain time depending on conditions and material parameters. FEM can help to approximate this change point.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Driessen-Ohlenforst, C.; Faulhaber, A.; Raupach, M. SMART-DECK: Monitoring des Feuchtegehaltes und kathodischer Korrosionsschutz des Bewehrungsstahles in Brückenfahrbahnen durch Zwischenschicht aus Textilbeton. Bauingenieur 2020, 95, 96–104. [Google Scholar] [CrossRef]
- Adam, V.; Will, N.; Hegger, J. Strengthening of Solid Bridge Deck Slabs with Textile Reinforced Concrete: Demonstrator Tests. Bauingenieur 2020, 95, 85–95. [Google Scholar] [CrossRef]
- Driessen-Ohlenforst, C.; Raupach, M. Application of electrical fields to reduce chloride ingress into concrete structures. Mag. Concr. Res. 2021. (accepted for publication). [Google Scholar]
- Tissier, Y.; Bouteiller, V.; Marie-Victoire, E.; Joiret, S.; Chaussadent, T.; Tong, Y. Electrochemical Chloride Extraction to Repair Combined Carbonated and Chloride Contaminated Reinforced Concrete. Electrochim. Acta 2019, 317, 486–493. [Google Scholar] [CrossRef]
- de Almeida Souza, L.R.; de Medeiros, M.H.F.; Pereira, E.; Capraro, A.P.B. Electrochemical Chloride Extraction: Efficiency and Impact on Concrete Containing 1% of NaCl. Constr. Build. Mater. 2017, 145, 435–444. [Google Scholar] [CrossRef]
- Nguyen, H.Y.T.; Pansuk, W.; Sancharoen, P. The Effects of Electro-Chemical Chloride Extraction on the Migration of Ions and the Corrosion State of Embedded Steel in Reinforced Concrete. KSCE J. Civ. Eng. 2018, 22, 2942–2950. [Google Scholar] [CrossRef]
- Xu, J.; Li, F. Numerical Analysis on Efficiency of Electrochemical Chloride Extraction of One Side Anode in Concrete. Ocean Eng. 2019, 179, 38–50. [Google Scholar] [CrossRef]
- Chen, X.; Fu, F.; Wang, H.; Liang, Q.; Yu, A.; Qian, K.; Chen, P. A Multi-Phase Mesoscopic Simulation Model for the Long-Term Chloride Ingress and Electrochemical Chloride Extraction. Constr. Build. Mater. 2021, 270, 121826. [Google Scholar] [CrossRef]
- Xu, J.; Peng, C.; Wang, G.; Wang, P. A Multi-phase Scale Simulation of Electrochemical Chloride Extraction in Crack-self-healing Concrete. Struct. Concr. 2021. [Google Scholar]
- Bastian, W.C.; Lapidus, L. Longitudinal diffusion in ion exchange and chromatographic columns. Finite column. J. Phys. Chem. 1956, 60, 816–817. [Google Scholar] [CrossRef]
- Danckwerts, P.V. Continuous flow systems: Distribution of residence times. Chem. Eng. Sci. 1953, 2, 1–13. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed; Clarendon: Oxford, UK, 1980. [Google Scholar]
- Mohsen, M.F.N.; Baluch, M.H. An Analytical Solution of the Diffusion- Convection Equation over a Finite Domain. Appl. Math. Model. 1983, 7, 285–287. [Google Scholar] [CrossRef]
- Doubova, A. Recent Advances in PDEs: Analysis, Numerics and Control, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Meister, A.; Sonar, T. Numerik: Eine Lebendige und gut Verständliche Einführung mit Vielen Beispielen; Springer Spektrum: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Li, G. Introduction to the Finite Element Method and Implementation with MATLAB.; Cambridge University Press: New York, NY, USA, 2020. [Google Scholar]
- COMSOL: Multiphysics Software for Optimizing Designs. 2021. Available online: https://www.comsol.com/ (accessed on 1 November 2021).
- Pepper, D.W.; Heinrich, J.C. The Finite Element Method: Basic Concepts and Applications with MATLAB®, MAPLE, and COMSOL, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
Parameter | Value | Unit |
---|---|---|
Length/Width/Height of mortar specimen | 0.3318/0.3318/0.035 | m |
Spacing of the carbon meshes | 0.038 | m |
Length/Width/Height of carbon layers | 0.3318/0.3318/0.00225 | m |
Depths of the carbon meshes from top | 0.01/0.025 | m |
Shape Function “Electrical Currents” | Quadratic | - |
Shape Function “Transport of Diluted Species” | Linear | - |
Discretization Method | Physics-controlled | - |
Mesh Type | Tetrahedron | - |
Min./Max. Element Size | 0.0555/1.29 | cm |
Curvature Factor | 0.3 | - |
Solver (both problems) | Linear iterative | - |
Nonlinear method for damping (both problems) | Newton (constant) | - |
Termination Technique | Tolerance | - |
Termination Tolerance | 1 | - |
Total number of Degrees of Freedom | 560,989 | - |
Parameter | Value | Unit |
---|---|---|
c0 | 44.44 | mol/m |
L | 1 | m |
Deff | 1 | 1/s |
h | 1 | m |
Parameter | Value | Unit |
---|---|---|
c0 | 63.25 | mol/m |
L | 0.035 | m |
Deff | 1/s | |
h | 0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 | m |
dt | 886 | s |
dx | 0.00035 | m |
Lnet1 | 0.01 | m |
Lnet2 | 0.025 | m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Driessen-Ohlenforst, C.; Raupach, M. Analytical and Numerical Investigation of an Electrochemical Chloride Barrier for Reinforced Concrete Structures. Materials 2021, 14, 6728. https://doi.org/10.3390/ma14216728
Driessen-Ohlenforst C, Raupach M. Analytical and Numerical Investigation of an Electrochemical Chloride Barrier for Reinforced Concrete Structures. Materials. 2021; 14(21):6728. https://doi.org/10.3390/ma14216728
Chicago/Turabian StyleDriessen-Ohlenforst, Carla, and Michael Raupach. 2021. "Analytical and Numerical Investigation of an Electrochemical Chloride Barrier for Reinforced Concrete Structures" Materials 14, no. 21: 6728. https://doi.org/10.3390/ma14216728
APA StyleDriessen-Ohlenforst, C., & Raupach, M. (2021). Analytical and Numerical Investigation of an Electrochemical Chloride Barrier for Reinforced Concrete Structures. Materials, 14(21), 6728. https://doi.org/10.3390/ma14216728