Study on the Influence of Defects on Fracture Mechanical Behavior of Cu/SAC305/Cu Solder Joint
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Sample Preparation
2.2. Pore Inspection with X-ray μ-CT
2.3. Experimental Setup and Method
2.4. FE Simulation
3. Results
3.1. Initial Microstructure
3.2. Uniaxial Tensile Test Results
3.3. Fracture Process and Fracture Morphology
3.4. Evolution Process of Defects by In situ X-ray μ-CT
3.5. Simulation Results
4. Discussion
4.1. Defects Affecting Crack Initiation and Propagation
4.2. Fracture Mechanism of Solder Joints
5. Conclusions
- (1)
- The tensile strength of the Cu/SAC305/Cu solder joint is 51.52 MPa, which is close to the fracture strength of the solder materials, and its fracture strain is 19.87% due to the great toughness of the solder material.
- (2)
- In terms of the crack propagation path, the simulation results are in good agreement with the experimental results. The reliability of the simulation results obtained by this study was verified by the in situ X-ray μ-CT observation of the 3D crack path.
- (3)
- The fracture morphology of the solder joints can be divided into four regions, namely, regions Q1, Q2, and Q3, which comprise the tensile fracture zone, and region S4, which is the shear fracture zone. As region Q2 is a brittle IMC layer and contains aggregated pores, its crack propagation rate was significantly higher compared with region Q1.
- (4)
- In the tensile fracture zone of Q2 and Q3, on one side of the solder, the tearing ridges of the aggregated pores were linear, owing to the large deformation, while those on the other side were arc-shaped. Additionally, the interface between the Cu6Sn5 phase and the β-Sn matrix debonded, owing to the inconsistent deformation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, H.B.; Zhang, X.P.; Zhou, M.B.; Zeng, J.B.; Mai, Y.W. Size and constraint effects on mechanical and fracture behavior of micro-scale Ni/Sn3.0Ag0.5Cu/Ni solder joints. Mater. Sci. Eng. A 2014, 617, 14–23. [Google Scholar] [CrossRef]
- Zhai, X.; Chen, Y.; Li, Y.; Zou, J.; Shi, M.; Yang, B. Effect of the Welding Process on the Microstructure and Mechanical Properties of Au/Sn–3.0Ag–0.5Cu/Cu Solder Joints. J. Electron. Mater. 2022, 51, 1597–1607. [Google Scholar] [CrossRef]
- Siroky, G.; Kraker, E.; Kieslinger, D.; Kozeschnik, E.; Ecker, W. Simulation and experimental characterization of microporosity during solidification in Sn-Bi alloys. Mater. Des. 2021, 212, 110258. [Google Scholar] [CrossRef]
- Hagberg, J.; Nousiainen, O.; Putaala, J.; Salmela, O.; Raumanni, J.; Rahko, M.; Kangasvieri, T.; Jääskeläinen, J.; Galkin, T.; Jantunen, H. Effect of voids on thermomechanical cracking in lead-free Sn3Ag0.5Cu interconnections of power modules. Microelectron Reliab. 2020, 109, 113674. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, L.; Li, M.; Long, W.; Wang, F. Development of lead-free interconnection materials in electronic industry during the past decades: Structure and properties. Mater. Des. 2022, 215, 110439. [Google Scholar] [CrossRef]
- Qiao, Y.; Ma, H.; Yu, F.; Zhao, N. Quasi-in-situ observation on diffusion anisotropy dominated asymmetrical growth of Cu-Sn IMCs under temperature gradient. Acta Mater. 2021, 217, 117168. [Google Scholar] [CrossRef]
- Kim, S.; Son, K.; Hyun, S. Mechanical behaviors of lotus-type porous Cu/Cu joint soldered by Sn-3.0Ag-0.5Cu alloy. Mater. Sci. Eng. A 2021, 822, 141655. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, Q.; Bai, H.; Zhao, L.; Yan, J. Improving tensile strength of SnAgCu/Cu solder joint through multi-elements alloying. Mater. Today Commun. 2021, 29, 102768. [Google Scholar] [CrossRef]
- Wang, H.; Hu, X.; Jiang, X.; Li, Y. Interfacial reaction and shear strength of ultrasonically- assisted Sn-Ag-Cu solder joint using composite flux. J. Manuf. Process. 2021, 62, 291–301. [Google Scholar] [CrossRef]
- Bušek, D.; Dušek, K.; Růžička, D.; Plaček, M.; Mach, P.; Urbánek, J.; Starý, J. Flux effect on void quantity and size in soldered joints. Microelectron Reliab. 2016, 60, 135–140. [Google Scholar] [CrossRef]
- Li, H.; An, R.; Wang, C.; Tian, Y.; Jiang, Z. Effect of Cu grain size on the voiding propensity at the interface of SnAgCu/Cu solder joints. Mater. Lett. 2015, 144, 97–99. [Google Scholar] [CrossRef]
- Bai, N.; Chen, X.; Fang, Z. Effect of strain rate and temperature on the tensile properties of tin-based lead-free solder alloys. J. Electron. Mater. 2008, 37, 1012–1019. [Google Scholar] [CrossRef]
- Tianhong, G.; Vivian, S.T.; Christopher, M.; Gourlay, T.; Britton, T.B. In-situ study of creep in Sn-3Ag-0.5Cu solder. Acta Mater. 2020, 196, 31–43. [Google Scholar]
- Ting, L.; Yongfeng, L.; Jiaye, F.; Gang, C.; Xu, C. Torsional fatigue with axial constant stress for Sn–3Ag–0.5Cu lead-free solder. Int. J. Fatigue 2014, 67, 203–211. [Google Scholar]
- Otiaba, K.C.; Okereke, M.I.; Bhatti, R.S. Numerical assessment of the effect of void morphology on thermomechanical performance of solder thermal interface material. Appl. Therm. Eng. 2014, 64, 51–63. [Google Scholar] [CrossRef]
- Qian, C.; Sun, Z.; Fan, J.; Ren, Y.; Sun, B.; Feng, Q.; Yang, D.; Wang, Z. Characterization and reconstruction for stochastically distributed void morphology in nano-silver sintered joints. Mater. Des. 2020, 196, 109079. [Google Scholar] [CrossRef]
- Okereke, M.I.; Ling, Y. A computational investigation of the effect of three-dimensional void morphology on the thermal resistance of solder thermal interface materials. Appl. Therm. Eng. 2018, 142, 346–360. [Google Scholar] [CrossRef]
- Pin, S.; Gracia, A.; Delétage, J.Y.; Fouquet, J.; Frémont, H. Robustness of BGAs: Parametric study of voids’ distribution in SAC solder joints. Microelectron Reliab. 2019, 102, 113484. [Google Scholar] [CrossRef]
- Kuczynska, M.; Maniar, Y.; Becker, U.; Weihe, S. Effect of shear and tensile-dominant cyclic loading on failure in SnAgCu solder. Microelectron Reliab. 2021, 120, 114101. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.; Wu, Z.; Liang, Y.; Yin, D. Competitive failure mechanism and load tolerance of solder joint under thermo-mechano-electrical coupling. Mech. Mater. 2021, 163, 104104. [Google Scholar] [CrossRef]
- Le, V.N.; Benabou, L.; Etgens, V.; Tao, Q.B. Finite element analysis of the effect of process-induced voids on the fatigue lifetime of a lead-free solder joint under thermal cycling. Microelectron Reliab. 2016, 65, 243–254. [Google Scholar] [CrossRef]
- Fan, J.; Wu, J.; Jiang, C.; Zhang, H.; Ibrahim, M.; Deng, L. Random voids generation and effect of thermal shock load on mechanical reliability of light-emitting diode flip chip solder joints. Materials 2020, 13, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kou, B.; Cao, Y.; Li, J.; Xia, C.; Li, Z.; Dong, H.; Zhang, A.; Zhang, J.; Kob, W.; Wang, Y. Granular materials flow like complex fluids. Nature 2017, 551, 360–363. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhao, H.; Yang, R.; Sun, F. Crack propagation behavior of die-cast AlSiMgMn alloys with in-situ SEM observation and finite element simulation. Mater. Today Commun. 2019, 19, 114–123. [Google Scholar] [CrossRef]
- Dudek, M.A.; Hunter, L.; Kranz, S.; Williams, J.J.; Lau, S.H.; Chawla, N. Three-dimensional (3D) visualization of reflow porosity and modeling of deformation in Pb-free solder joints. Mater Charact. 2010, 61, 433–439. [Google Scholar] [CrossRef]
- Chawla, N.; Sidhu, R.S.; Ganesh, V.V. Three-dimensional visualization and microstructure- based modeling of deformation in particle-reinforced composites. Acta Mater. 2006, 54, 1541–1548. [Google Scholar] [CrossRef]
- Zhai, X.; Chen, Y.; Li, Y.; Zou, J.; Shi, M.; Yang, B.; Guo, C.; Hu, R.; Su, X. Research on the Mechanical and Performance Effects of Flux on Solder Layer Interface Voids. J. Electron. Mater. 2021, 50, 6629–6638. [Google Scholar] [CrossRef]
- Siroky, G.; Kraker, E.; Rosc, J.; Kieslinger, D.; Brunner, R.; van der Zwaag, S.; Kozeschnik, E.; Ecker, W. Analysis of Sn-Bi Solders: X-ray micro computed tomography imaging and microstructure characterization in relation to properties and liquid phase healing potential. Materials 2021, 14, 153. [Google Scholar] [CrossRef]
- Garami, T.; Krammer, O.; Harsányi, G.; Martinek, P. Method for validating CT length measurement of cracks inside solder joints. Solder Surf. Mt Tech. 2016, 28, 13–17. [Google Scholar] [CrossRef]
- Su, L.; Yu, X.; Li, K. Michael Pecht, Defect inspection of flip chip solder joints based on non-destructive methods: A review. Microelectron Reliab. 2020, 110, 113657. [Google Scholar] [CrossRef]
- Rauer, M.; Volkert, A.; Schreck, T.; Härter, S.; Kaloudis, M. Computed-Tomography-Based Analysis of Voids in SnBi57Ag1 Solder Joints and Their Influence on the Reliability. J. Fail. Anal. Prev. 2014, 14, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Padilla, E.; Jakkali, V.; Jiang, L.; Chawla, N. Quantifying the effect of porosity on the evolution of deformation and damage in Sn-based solder joints by X-ray microtomography and microstructure-based finite element modeling. Acta Mater. 2012, 60, 4017–4026. [Google Scholar] [CrossRef]
- Liu, C.; Xia, D.; Tian, M.; Chen, S.; Gan, G.; Du, Y.; Liu, X.; Jiang, Z.; Wu, Y.; Ma, Y. Fatigue cracking growth of SAC305 solder ball under rapid thermal shock. Eng. Fract. Mech. 2022, 259, 108141. [Google Scholar] [CrossRef]
- Kelly, M.B.; Niverty, S.; Chawla, N. Four dimensional (4D) microstructural evolution of Cu6Sn5 intermetallic and voids under electromigration in bi-crystal pure Sn solder joints. Acta Mater. 2020, 189, 118–128. [Google Scholar] [CrossRef]
- Lall, P.; Wei, J. X-ray micro-CT and DVC based analysis of strains in metallization of flexible electronics. In Proceedings of the 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 30 May–2 June 2017; pp. 1253–1261. [Google Scholar]
- Lall, P.; Goyal, K.; Goyal, K.; Leever, B.; Marsh, J. Warpage of flexible-board assemblies with bags during reflow and post-assembly usage. In Proceedings of the SMTA International, Rosemont, IL, USA, 14–18 October 2018. [Google Scholar]
- Shi, L.; Mei, Y.; Chen, G.; Chen, X. In situ X-ray observation and simulation of ratcheting- fatigue interactions in solder joints. Electron. Mater. Lett. 2017, 13, 97–106. [Google Scholar] [CrossRef]
- Joo, H.S.; Lee, C.J.; Min, K.D.; Hwang, B.U.; Jung, S.B. Mechanical properties and microstructural evolution of solder alloys fabricated using laser-assisted bonding. J. Mater. Sci. Mater. Electron. 2020, 31, 22926–22932. [Google Scholar] [CrossRef]
- Abaqus/CAE User’s Manual (6.14). Available online: http://130.149.89.49:2080/v6.14/books/usb/default.htm (accessed on 18 June 2022).
- Xiaowu, H.; Tao, X.; Leon, M.K.; Yulong, L.; Xiongxin, J. Microstructure evolution and shear fracture behavior of aged Sn3Ag0.5Cu/Cu solder joints. Mater. Sci. Eng. A 2016, 673, 167–177. [Google Scholar]
- Mulugeta, A.; Guna, S. Lead-free Solders in Microelectronics. Mater. Sci. Eng. R Rep. 2000, 27, 95–141. [Google Scholar]
- Zimprich, P.; Betzwar-Kotas, A.; Khatibi, G.; Weiss, B.; Ipser, H. Size effects in small scaled lead-free solder joints. J. Mater. Sci. Mater. Electron. 2008, 19, 383–388. [Google Scholar] [CrossRef]
- Xie, M.W.; Chen, G.; Yang, J.; Xu, W.L. Temperature- and rate-dependent deformation behaviors of SAC305 solder using crystal plasticity model. Mech. Mater. 2021, 157, 103834. [Google Scholar] [CrossRef]
- Peter, B.; Liang, Y.; Pericles, K. Assessing the risk of “Kirkendall voiding” in Cu3Sn. Microelectron Relia. 2011, 51, 837–846. [Google Scholar]
- Tang, W.B.; Long, X.; Yang, F.Q. Tensile deformation and microstructures of Sn–3.0Ag–0.5Cu solder joints: Effect of annealing temperature. Microelectron Reliab. 2020, 104, 113555. [Google Scholar] [CrossRef]
Elements | Sn | Ag | Cu |
---|---|---|---|
SAC305 (wt.%) | 96.50 | 3.00 | 0.50 |
Strain State | 0.00% | 2.77% | 13.46% |
---|---|---|---|
General surface of defects (2) | 14.31 × | 15.26 × | 20.16 × |
Total volume of defects (3) | 2.02 × | 2.26 × | 4.60 × |
Defect volume ratio | 4.11% | 4.59% | 8.31% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, Z.; Wang, J.; Duan, G.; Li, H. Study on the Influence of Defects on Fracture Mechanical Behavior of Cu/SAC305/Cu Solder Joint. Materials 2022, 15, 4756. https://doi.org/10.3390/ma15144756
Zhang S, Wang Z, Wang J, Duan G, Li H. Study on the Influence of Defects on Fracture Mechanical Behavior of Cu/SAC305/Cu Solder Joint. Materials. 2022; 15(14):4756. https://doi.org/10.3390/ma15144756
Chicago/Turabian StyleZhang, Sinan, Zhen Wang, Jie Wang, Guihua Duan, and Haixia Li. 2022. "Study on the Influence of Defects on Fracture Mechanical Behavior of Cu/SAC305/Cu Solder Joint" Materials 15, no. 14: 4756. https://doi.org/10.3390/ma15144756
APA StyleZhang, S., Wang, Z., Wang, J., Duan, G., & Li, H. (2022). Study on the Influence of Defects on Fracture Mechanical Behavior of Cu/SAC305/Cu Solder Joint. Materials, 15(14), 4756. https://doi.org/10.3390/ma15144756